Leis de Newton - Dinâmica do ponto material

\(\)Um corpo é lançado com velocidade inicial \( v_o= 22 \;m/s,\; \) segundo um ângulo \( \alpha \) com a horizontal. \(\) O corpo está na base de um plano inclinado de ângulo \( \Phi = 25 \;{}^{\circ},\; \) (ver figura). \(\) Qual o ângulo de lançamento que corresponde ao alcance máximo L ao longo do plano \( \;? \)\(\)

\(\)Um drone voa horizontalmente com uma velocidade constante \( U= 5 \;m/s. \) Uma pedra é lançada com velocidade inicial \( v_o= 23 \;m/s,\; \) segundo um ângulo \( \alpha = 72 \;{}^{\circ}, \) indicado na figura. Este é o ângulo de visão do drone pelo observador. Sabemos que a pedra consegue atingir o drone. \(\) Determine a altura \( \text{h} \) do voo do drone \( \;? \)\(\)

\(\)Na figura está representada uma roda de raio \( R= 46 \;cm \) de um automóvel que se desloca com velocidade horizontal constante \( v_o= 7 \;m/s,\; \) sobre uma estrada enlameada. \(\) Os pedaços de lama que ficam colados ao pneu vão descolar e são projectados, devido à rotação. Seguem uma trajectória semelhante à linha tracejada da figura \( \;.\; \) \(\) Determine a altura máxima \( \text{h} \;,\; \) relativa ao plano horizontal, alcançada pelo pedaço de lama \( \;?\; \) \(\) SUGESTÃO: Comece por calcular o ângulo \( \theta \) da figura que vai corresponder à altura máxima \( \;.\; \) \( \)\(\)

\(\)Na figura um cubo de gelo escorrega sobre uma esfera de aço fixa, de raio \( R= 18 \;cm,\; \) a partir do topo, sem velocidade inicial. Despreze qualquer atrito \( \;.\; \) \(\) Determine a distância \( \text{d} \) horizontal entre o ponto de largada e o ponto de contacto do cubo de gelo com o solo, depois de perder o contacto com a esfera \( \;?\; \) \(\) SUGESTÃO: Comece por calcular o ângulo \( \theta \) em que o cubo perde o contacto com a esfera \( \;.\; \) \( \)\(\)

\(\)Na figura um corpo de massa \( M= 90 \;g \) é lançado horizontalmente,despreze o atrito, com uma velocidade constante \( v_0= 6 \;m/s.\; \) \(\) Vai subir uma calha semicircular de raio \( R \) passa no ponto Q e vai cair, linha a tracejado, tocando o solo no ponto P, a uma distância \( \text{d} \) do início da subida. \(\) Calcule o valor do raio R que conduz a um d máximo (alcance máximo) \( \;? \) \( \) \( \)\(\)

\(\)Um cubo de gelo escorrega sobre uma esfera de aço a partir do topo e sem velocidade inicial, como indicado na figura. A esfera tem raio \( R= 28. \;cm,\; \) a massa do cubo de gelo é \( m= 17. \;g. \) Despreze qualquer atrito entre o gelo e a esfera \( \;.\; \) \(\) Calcule o ângulo \( \theta \) em que o cubo de gelo perde o contacto com a esfera \( \;.\; \) \( \)\(\)

\(\)Na figura um cubo de gelo escorrega sobre uma esfera de aço fixa, de raio \( R= 43 \;cm,\; \) a partir do topo, sem velocidade inicial. Despreze qualquer atrito \( \;.\; \) \(\) Determine a distância \( \text{d} \) horizontal entre o ponto de largada e o ponto de contacto do cubo de gelo com o solo, depois de perder o contacto com a esfera \( \;?\; \) \(\) SUGESTÃO: Comece por calcular o ângulo \( \theta \) em que o cubo perde o contacto com a esfera \( \;.\; \)\(\)

\(\)O objeto da figura tem massa \( M = 6.8 \;kg\; \) e é empurrado por uma força \( \vec{\mathbf{F}} \) contra uma parede vertical. O coeficiente de atrito estático entre o objeto e a parede é \( \mu _s= 0.5 \;\;.\; \) \(\)Qual é o valor mínimo da força \( \vec{\mathbf{F}} \) para manter o objeto em equilíbrio? \( \)\(\)

\(\)Um objeto, com massa \( m = 158 \;kg\; \) está inicialmente no chão, em repouso. Num dado instante, começa a ser levantado por um guindaste, com uma aceleração constante \( \vec{\mathbf{a}} = 2.9 \;\vec{\mathbf{e}} _y\;\left(ms^{-2}\right).\; \) \(\)Qual é o módulo da tensão exercida no cabo que liga o objeto ao guindaste? \( \)\(\)

\(\)Os dois objetos da figura estão ligados por uma corda inextensível e de massa desprezável. \( \) Uma força constante \( F = 111 \;N \) é aplicada ao objeto \( A \). O objeto \( B \) parte do repouso e desce \( h = 17 \;m \) em \( t = 4 \;s \) . A tensão na corda que liga os dois objetos é \( T = 28 \;N \) . Qual é a massa de \(A\)? \( \)\(\)

\(\)Duas massas \( m_1 \) e \( m_2 \) estão ligadas por um fio conforme indicado na figura acima. As massas encontram-se em cima de planos inclinados com ângulos \( \alpha =50\;{}^{\circ} \) e \( \beta =30\;{}^{\circ}. \) Considere o sistema de eixos apresentado na figura relativo ao corpo 2. Tomando \( T_2 \) como o módulo da tensão aplicada no corpo 2 e \( T_1 \) como o módulo da tensão aplicada no corpo 1 e \( a_2 \) a aceleração do corpo 2 no referencial indicado, qual a equação de Newton que caracteriza o movimento do corpo 2? \( \)\(\)

\(\)Sabe-se que o corpo 2 tem uma massa \( m_2= 7 \;kg \) e que este desce o plano com uma aceleração \( a_2= 2 \;m\;s^{-2}. \) Desprezando o momento de inércia da roldana, qual é a massa do corpo 1? Não há atrito entre as massas e as superfícies dos planos inclinados. \( \) Considere a aceleração gravítica \( g= 9.8 \;m\;s^{-2}. \)\(\)

Considere agora que o momento de inércia da roldana não é desprezável e influencia o movimento das massas. Tomando \(m_1=1 \; kg,\) \(m_2=4 \; kg\) e \(a_2=2 \; m\;s^{-2},\) calcule o módulo da tensão aplicada sobre o corpo 1. \( \; \)\(\)

Considere o módulo das tensões aplicadas na massas. Nas condições da alínea anterior qual das seguintes expressões é verdadeira? \( \)\(\)

Considere que a roldana tem um raio \( r=10\;cm, \) e uma distribuição de massa desconhecida. Sabendo que \( m_1=1\;kg, \) \( m_2=13\;kg \) e \( a_2=2\;m\;s^{-2}, \) e assumindo que a diferença entre as tensões \( T_2 \) e \( T_1 \) é de \( \Delta T=T_2-T_1=7\;N, \) calcule o momento de inércia da roldana. \( \)\(\)

\(\)Quando se aplica uma força \( \text{F} \) a um bloco, de massa \( m_1 \) , a aceleração desse bloco é \( a_1 \) . Quando se aplica a mesma força a um bloco de massa \( m_2 \) , aceleração é \( a_2 = 2 a_1 \) . Se se aplicar a mesma força aos dois blocos ligados, de massa \( m_1+m_2 \) , qual é a aceleração \( a_3 \) do conjunto? \( \)\(\)

\(\)No espaço, uma bola de bowling (1) e uma bola de ténis (2) atraem-se mutuamente, devido às forças gravitacionais. \( F_{12} \) é a força que (1) exerce em (2) e \( F_{21} \) é a força que (2) exerce sobre (1). \( \) Qual das seguintes afirmações, relativamente aos módulos destas forças, está certa? \( \)\(\)

\(\)No espaço, uma bola de bowling (1) e uma bola de ténis (2) atraem-se mutuamente, devido às forças gravitacionais. \( a_1 \) é a aceleração de (1) e \( a_2 \) é a aceleração de (2). \( \) Qual das seguintes afirmações, relativamente aos módulos destas acelerações,está certa? \( \)\(\)

\(\)Uma pena, de massa \( m_1 \) , e uma pedra, de massa \( \;m_2\gt m_1 \) , caem em queda livre no interior de um tubo , do qual se extraiu o ar. \( \) Se \( F_{pena} \) e \( F_{pedra} \) forem as forças gravíticas exercidas sobre a pena e a pedra, respetivamente, qual das seguintes hipóteses está certa? \( \) \( \)\(\)

\(\)Na Terra, um astronauta dá um pontapé numa bola de bowling e magoa-se. \( \) Um ano mais tarde, na Lua, acha que é boa ideia dar um pontapé, com a mesma força, na mesma bola. \( \) A dor que sente agora no pé é \( \)\(\)