Movimentos oscilatórios

\(\)A figura representa o deslocamento de um objeto, em função do tempo. \( \) \(\)Qual é a amplitude deste movimento? \( \;\; \)\(\)

\(\)O pêndulo físico da figura é constituído por uma barra homogénea, de secção circular, com comprimento \( L = 3.2 \;m \) e massa \( M = 5.9 \;kg. \) A barra roda livremente em torno de uma das extremidades e o seu momento de inércia, relativamente a este eixo, é \( I = \;M\;L^2\;/3 \left(kg\;m^2\right). \) \(\)Na aproximação dos pequenos ângulos, qual é o período de oscilação deste pêndulo? \( \;\; \)\(\)

\(\)O movimento representado na figura é harmónico simples. \( \) Em qual das configurações (A a E) se mostra o objeto no instante em que o módulo da velocidade é máximo? \( \)\(\)

\(\)A figura representa o deslocamento de um objeto, em função do tempo. \( \) \(\)Qual é a frequência angular deste movimento? \( \;\; \)\(\)

\(\)O movimento representado na figura é harmónico simples. \( \) Em qual das configurações (A a E) se mostra o objeto no instante em que a velocidade é nula? \( \)\(\)

\(\)A figura representa o deslocamento de um objeto, em função do tempo. \( \) \(\)Qual é o período deste movimento? \( \;\; \)\(\)

\(\)O movimento representado na figura é harmónico simples. \( \) Em qual das configurações (A a E) se mostra o objeto no instante em que a aceleração é nula? \( \)\(\)

\(\)A figura representa o deslocamento de um objeto, em função do tempo. \( \) \(\)Qual é a frequência linear deste movimento? \( \;\; \)\(\)

\(\)O movimento representado na figura é harmónico simples. \( \) Em qual das configurações (A a E) se mostra o objeto no instante em que o módulo da aceleração é máximo? \( \)\(\)

Calcule o valor do módulo do torque total aplicado sobre a bola, relativamente ao ponto onde o fio está suspenso, no instante imediatamente antes da colisão com a parede. Nota: para o cálculo do torque total deve considerar todas as forças que atuam na massa suspensa. \( \)\(\)

\(\)A figura representa uma corda com secção uniforme. A sua densidade é \(\rho =1 \; kg\;m^{-3}\) e a secção é \(A=0.1 \; m^2.\) Qual é a densidade linear de massa \(\mu \) = massa / comprimento ? \( \; \)\(\)

\(\)Uma bolinha de gelo oscila no fundo de uma taça, sem atrito e sem rotação. \( m_b= 7 \;g. \) A forma da taça é esférica e de raio \( r_{taça}= 7 \;cm. \) Dê a resposta com duas casas decimais. Apresente os cálculos nas folhas que submete. \( \)\(\)

\(\)Uma massa \( m_1= 0.2 \;kg \) colide com uma massa \( m_2= 0.1 \;kg.\; \) A colisão é totalmente inelástica. A velocidade inicial de \( m_1 \) é \( v_1= 3 \;m/s.\; \) No instante logo após a colisão as duas massas, ligadas, empurram uma mola cuja extremidade está no ponto \( x_o= 0 \;cm.\; \) A mola vai encolher até \( x= 12 \;cm. \) Calcule o coeficiente de restituição da mola, \(k\), apresentando o resultado com três algarismos significativos. \( \)\(\)

\(\)Na experiência referida na pergunta anterior verifica-se que a amplitude de oscilação depende do tempo. De facto a amplitude de oscilação é um terço da amplitude inicial ao fim de \( t_{1/3}= 2.1 \;s\; \) devido à força de atrito entre o bloco e a mesa. \( \) Calcule o coeficiente da força de atrito entre o bloco e a mesa assumindo que a força de atrito é proporcional à velocidade do bloco. \( \) Dê a resposta com duas casas decimais. \( \)\(\)

Assuma que a bola foi largada de uma altura \( h=1\;cm. \) Determine a velocidade da bola \( v \) imediatamente antes de embater na parede. \( \) Considere a aceleração gravítica \( g=9.8\;m\;s^{-2} \)\(\)

Assuma agora que a bola é largada de uma altura \(h\) tal que o ângulo que o fio faz com a vertical é de \( \theta =32\;{}^{\circ}. \) Se o fio tiver um comprimento \( l=10\;cm \) e o corpo um peso de \( P=2\;N, \) qual o valor do módulo do torque que está aplicado à bola no instante em que ela é largada? Calcule o torque em relação ao ponto de suspensão do fio no teto. \( \) Apresente o resultado em unidades S.I. \( \)\(\)

\(\)Considere que segura uma bola de massa \( m_1=2\;g \) e que a mesma está presa por um fio de comprimento \( l=13\;cm \) tal que o ângulo que o fio faz com a vertical é \( \theta =45\;{}^{\circ}. \) A bola é largada e vai cair (pela ação da força gravítica mas presa no fio) até embater numa parede (ver figura). A velocidade inicial da bola quando é largada é nula. \( \) Qual a altura \( h \) de que a bola é largada? Apresente o resultado em centímetros. Considere que quando a bola bate na parede a sua altura é zero. \( \)\(\)

\(\)Um bloco de massa \( m_b= 0.6 \;kg \) é lançado, sobre uma mesa e contra uma mola, comprimindo a mola. \( \) A constante de elasticidade da mola é \( k= 60. \;N/m.\; \) Posteriormente o bloco fica preso à mola e a oscilar. Considere a massa da mola nula. \( \) Calcule o período de oscilação do bloco preso à mola se o atrito for desprezável. \( \) Dê a resposta com duas casas decimais. \( \)\(\)

Qual a expressão para o período deste pêndulo? \( \)\(\)

Se a bola for largada inicialmente de uma altura \( h, \) considerando que a colisão contra a parede é uma colisão elástica, qual a expressão correta para a altura máxima que a bola conseguirá alcançar após essa colisão? \( \)\(\)