Ondas

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=6\;Hz \) e uma amplitude \( A = 12\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=25\;m/s. \) A densidade linear da corda é \( \mu =0.03\;kg/m. \) Determine a tensão a que está sujeita a corda e apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=3\;Hz \) e uma amplitude \( A = 8\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.05\;kg/m. \) Determine a tensão a que está sujeita a corda e apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=5\;Hz \) e uma amplitude \( A = 12\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.05\;kg/m. \) Determine a potência necessária em \( \;W \) para manter a corda a vibrar. Apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=5\;Hz \) e uma amplitude \( A = 12\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.05\;kg/m. \) Determine a potência necessária em \( \;W \) para manter a corda a vibrar. Apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)A tensão aplicada na extremidade da corda é \( T= 25. \;N.\; \) Qual o valor da densidade linear da corda? \( \) Dê a resposta em \( \;kg/m.\; \)\(\)

\(\)Qual o valor da velocidade de propagação das ondas na corda? \( \) Dê a resposta em metro por segundo \( \;(m/s).\; \)\(\)

\(\)Duas ondas sinusoidais, de igual frequência, propagam-se numa corda em sentidos opostos dando origem à formação de ondas estacionárias. As ondas podem ser descritas pelas funções: \( y_{1 }(x,t)= 0.6 \sin (5. x-50. t) \;(m) \) e \( y_{2 }(x,t)= 0.6 \sin (50. t+5. x) \;(m).\; \) Verifica-se que há um nodo a meio da corda. Considere que a corda tem comprimento \( L\) e as extremidades fixas. \( \) Qual a amplitude de oscilação do ponto na corda que fica a uma distância \( x= 0.35 \;m \) da extremidade da corda que pode ser considerada como o início da corda. Dê a resposta em metros. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=4\;Hz \) e uma amplitude \( A = 8\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.03\;kg/m. \) Determine o número de onda \( (k) \) e apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=3\;Hz \) e uma amplitude \( A = 16\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=10\;m/s. \) A densidade linear da corda é \( \mu =0.04\;kg/m. \) Determine o número de onda \( (k) \) e apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Um fio de aço, com comprimento \( L= 3.1 \;m\; \) , tem uma extremidade atada ao teto. Na outra extremidade, está pendurado um objeto, com massa \( M= 448 \;kg\;. \) Um impulso transversal demora \( t= 0.065 \;\;s \) a percorrer todo o comprimento do fio. \( \) \(\)Qual é a massa do fio? \( \)\(\)

\(\)O som emitido pela sirene do barco da figura é ouvido simultaneamente pelo mergulhador e por uma pessoa que está em terra. A sirene está colocada à altura \( s = 2.2 \;m \) acima da superfície da água e a pessoa em terra está à distância \( d = 28 \;m \) da sirene. Considere que a velocidade de propagação do som na água é \( v_{agua}= \;\;1490\;ms^{-1} \) e no ar é \( v_{ar}= \;\;340\;ms^{-1}\;. \) \(\)Qual é a distância \( \;\;h \) entre a superfície da água e o mergulhador? \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=8\;Hz \) e uma amplitude \( A = 12\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.07\;kg/m. \) Determine a frequência angular ( \( \omega \) ) e apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=7\;Hz \) e uma amplitude \( A = 10\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.06\;kg/m. \) Determine a frequência angular ( \( \omega \) ) e apresente o resultado com 3 algarismos significativos. \( \)\(\)

Se a luz entrar no material do cilindro central com um ângulo \( \theta _B=27\;{}^{\circ}, \) calcule qual o ângulo \( \theta _C \) com que a luz incide na fronteira entre o material com índice de refração \( n_f \) e o material da cobertura com índice de refração \( n_c\;. \) Considere o ângulo \(\theta _C \) medido em relação à normal ao plano de separação entre esses dois meios. \( \)\(\)

Nas condições da alínea anterior, e assumindo que o ângulo de incidência é de \( \theta _C=63\;{}^{\circ} \) calcule o valor limite de \( n_c \) para que ocorra reflexão total no interface cilindro-capa. \( \)\(\)

Assuma agora que a luz atinge a superfície da fronteira entre \( n_f \) e \( n_c \) fazendo um ângulo de \(50{}^{\circ}\) com a normal a esta superfície. \( \) Por forma a que haja reflexão total na interface cilindro central-capa qual das opções deverá acontecer? \( \)\(\)

\(\)Neste problema pretende-se analisar como é que uma fibra ótica consegue transportar luz. Uma fibra ótica pode ser idealizada como um cilindro de material com índice de refracção \( n_f=1.5 \) coberto com uma capa, também cilíndrica, com índice de refração \( n_c\;. \) Considere um raio de luz incidente na parte central da fibra ótica a partir do ar. O ar tem índice de refração \( n_a=1\;, \) e o ângulo de incidência \( \theta _A=20\;{}^{\circ} \) é medido relativamente à normal à face plana do cilindro (ver figura). \( \) Qual o ângulo de refração \( \theta _B= \) com que o raio de luz entra no material, ângulo medido relativamente à normal à superfície de separação ar/cilindro? Apresente o resultado em graus. Nota: a magnitude dos ângulos apresentados é arbitrária. \( \)\(\)

\(\)Considere uma pequena placa metálica onde existem duas fendas, muito estreitas, separadas por uma distância \( d \) e onde incide um feixe de luz monocromática de comprimento de onda \( \lambda =600\;nm \) (cor alaranjada). A uma distância \( x \) da placa existe um alvo onde pode ser observado o padrão de interferência provocado pelo feixe de luz ao atravessar as fendas. \( \) Na figura acima estão esquematicamente representados a placa com as fendas (visão lateral), o alvo onde se verifica o padrão de interferência e um gráfico com indicativo da intensidade luminosa em cada ponto do alvo. \( \) Sabendo que \( x =3\;m \) e \( d=6\;10^{-6}m, \) determine a distância entre o segundo e o primeiro máximos de intensidade luminosa que são observados no alvo, para além do máximo central. \( \) Apresente o resultado em centímetros e com duas casas decimais. \( \)\(\)

\(\)Duas colunas estão ligadas a um mesmo amplificador emitindo um som com frequência \( f=50\;Hz. \) As colunas estão fixas a uma parede, alinhadas na direção horizontal e a uma altura do chão \( H=1.6\;m. \) A distância entre as colunas na parede é \( d=9\;m. \) Um técnico de som está situado a uma distância \( L\) \( \) das paredes mesmo em frente a uma das colunas, como está esquematicamente repreentado na figura acima. Os ouvidos estão à mesma altura das colunas. Considere que o técnico, por estar a proceder a testes antes de um concerto, tapa um dos ouvidos e a certas distâncias \( L \) deixa de ouvir som. Em todas estas situações o técnico está sempre em frente à mesma coluna e os únicos sons que ouve têm origem nas colunas e não há sons refletidos. \( \) Calcule a distância mínima à parede, \(L_{\min }\), a que o técnico deixa de ouvir o som produzido pelas colunas. Considere a velocidade do som no ar \( v_{som}=340\;m/s. \) Apresente o resultado com três algarismos significativos. \( \)\(\)