Mecânica e Ondas

\(\)Considere um piloto sentado num F16 e num vôo de longo curso à volta da Terra, numa trajetória circular a uma altitude constante H \( \) relativamente à superfície da Terra. \( \) Imagine ainda que a velocidade do F16 é constante. \( \) \(\)Escolha, entre as afirmações seguintes, qual é aquela que corresponde à descriçao correta, do ponto de vista do piloto, das forças que nele atuam nesta fase de vôo. \( \)\(\)

\(\)Sabe-se que o corpo 2 tem uma massa \( m_2= 7 \;kg \) e que este desce o plano com uma aceleração \( a_2= 2 \;m\;s^{-2}. \) Desprezando o momento de inércia da roldana, qual é a massa do corpo 1? Não há atrito entre as massas e as superfícies dos planos inclinados. \( \) Considere a aceleração gravítica \( g= 9.8 \;m\;s^{-2}. \)\(\)

\(\)Os dois objetos da figura estão ligados por uma corda inextensível e de massa desprezável. \( \) Uma força constante \( F = 111 \;N \) é aplicada ao objeto \( A \). O objeto \( B \) parte do repouso e desce \( h = 17 \;m \) em \( t = 4 \;s \) . A tensão na corda que liga os dois objetos é \( T = 28 \;N \) . Qual é a massa de \(A\)? \( \)\(\)

\(\)Um automóvel está parado num semáforo. No instante \( t = 0 \;s \) arranca seguindo uma trajetória em linha reta, horizontal e com uma aceleração variável dada por \( a(t) = 2.\, -0.5 t \;m\left/s^2\right. \) em unidades SI. \( \) Quanto tempo passa até o carro parar? \( \)\(\)

\(\)A energia emitida pelo Sol resulta, numa abordagem simplificada, do processo de formação de um núcleo de Hélio a partir de quatro núcleos de Hidrogénio. Neste processo, dois dos protões são transformados em neutrões e libertam dois positrões e dois neutrinos. Faça uma estimativa do fluxo de neutrinos que se podem detetar na Terra vindos do interior do Sol e que são um teste crucial aos modelos solares. \( \) Considere ainda que a massa do protão é de \( 1.673 \;\times 10^{-27}\;kg, \) a massa do Hélio é de \( 4.0039 \;u.m.a. \) ( com \( 1 u.m.a. = 1.66 \;\times 10^{-27}\;Kg \) ) , a luminosidade solar é de \( L_{\odot =} 3.8 \;\times 10^{26}\;W \) e a distância da Terra ao Sol é de \( 1.5 \;\times 10^{11}m. \) Apresente o resultado com 5 algarismos significativos. \( \)\(\)

\(\)Considere a figura em que se representa o movimento a duas dimensões de um projéctil. O vector da velocidade inicial faz um ângulo \( \theta \) com a horizontal, tal como se ilustra na figura. \( \) Recorde-se dos exercícios de revisão que resolveu acerca de funções trigonométricas, e seleccione a opção correcta em relação à componente da velocidade inicial em x em função do ângulo \( \theta \) : \( \)\(\)

\(\)Na figura um automóvel sobe primeiro uma rampa de inclinação \( \alpha = 16 \;{}^{\circ} \) com uma velocidade constante \( v_1= 14 \;m/s.\; \) \(\) Desce depois uma rampa idêntica com velocidade constante \( v_2= 23 \;m/s. \) \(\) Segue então num plano horizontal, agora com velocidade constante \( v_0 \;. \) \(\) Sabemos que nos três casos a potência do seu motor manteve-se constante. Nota: Na figura estão representadas as três forças F que o motor faz, nas três situações \( \;. \) \(\) Determine a velocidade do automóvel no plano horizontal \( \;? \) \( \)\(\)

\(\)Na figura um pêndulo de massa \( m= 133 \;g \) e comprimento \( L= 70 \;cm\; \) é largado da posição A que faz um ângulo \( \theta _1= 45 \;{}^{\circ} \) com a vertical. Na descida bate num prego colocado na vertical, à distância \( \text{x} \) do ponto pivot fixo, e dobra passando a executar uma trajectória de raio diferente \( \;. \) \(\) Sabemos que a tensão de ruptura do fio é \( K= 5.3 \) vezes o peso do pêndulo \( \;. \) \(\) Determine a distância máxima x onde deve ser colocado o prego, de modo que o fio não parta quando o atinge \( \;? \)\(\)

\(\)Na figura um corpo de massa \( M= 90 \;g \) é lançado horizontalmente,despreze o atrito, com uma velocidade constante \( v_0= 6 \;m/s.\; \) \(\) Vai subir uma calha semicircular de raio \( R \) passa no ponto Q e vai cair, linha a tracejado, tocando o solo no ponto P, a uma distância \( \text{d} \) do início da subida. \(\) Calcule o valor do raio R que conduz a um d máximo (alcance máximo) \( \;? \) \( \) \( \)\(\)

\(\)Na figura está representada uma roda de raio \( R= 46 \;cm \) de um automóvel que se desloca com velocidade horizontal constante \( v_o= 7 \;m/s,\; \) sobre uma estrada enlameada. \(\) Os pedaços de lama que ficam colados ao pneu vão descolar e são projectados, devido à rotação. Seguem uma trajectória semelhante à linha tracejada da figura \( \;.\; \) \(\) Determine a altura máxima \( \text{h} \;,\; \) relativa ao plano horizontal, alcançada pelo pedaço de lama \( \;?\; \) \(\) SUGESTÃO: Comece por calcular o ângulo \( \theta \) da figura que vai corresponder à altura máxima \( \;.\; \) \( \)\(\)

\(\)Na figura um cubo de gelo escorrega sobre uma esfera de aço fixa, de raio \( R= 18 \;cm,\; \) a partir do topo, sem velocidade inicial. Despreze qualquer atrito \( \;.\; \) \(\) Determine a distância \( \text{d} \) horizontal entre o ponto de largada e o ponto de contacto do cubo de gelo com o solo, depois de perder o contacto com a esfera \( \;?\; \) \(\) SUGESTÃO: Comece por calcular o ângulo \( \theta \) em que o cubo perde o contacto com a esfera \( \;.\; \) \( \)\(\)

\(\)Na figura duas esferas idênticas, de massa \( M= 15 \;kg \) e raio \( R= 16 \;cm,\; \) são colocadas dentro de um contentor cilíndrico de vidro, de diâmetro \( L= 47 \;cm.\; \) Use \( g= 9.8 \;m\left/s^2.\right. \) \(\) Determine a amplitude da força de contacto entre as duas esferas \( F= \;? \) \( \) \( \)\(\)

\(\)Considere o sistema mecânico da figura. O corpo \( M= 18 \;kg \) escorrega, sem atrito, sobre o plano horizontal. \(\) O corpo \( m= 8 \;kg\; \) é puxado por um fio que passa numa roldana fixa em M. Por acção dessa força pode escorregar em cima de M, com um coeficiente de atrito cinético \( \mu _k= 0.3 \;. \) Use \( F= 37 \;N. \) \(\) Determine a aceleração horizontal do corpo superior m em relação ao corpo inferior M (positiva para a esquerda) \( \;? \) \( \) \( \)\(\)

\(\)Na figura uma esfera de massa \( M= 10 \;kg \) e raio \( R= 8 \;cm,\; \) está encostada a uma parede de vidro e presa à mesma parede por um fio de aço, radial, de comprimento \( L= 30 \;cm.\; \) Despreze o atrito e use \( g= 9.8 \;m\left/s^2.\right. \) \(\) Determine a amplitude da força normal de contacto entre a esfera e a parede \( N= \;? \) \( \) \( \)\(\)

\(\)Na figura um corpo de massa \( m= 175 \;g \) e uma mola de constante \( K= 267 \;N/m\; \) estão sobre um plano inclinado de ângulo \( \theta = 33 \;{}^{\circ}. \) \(\) O corpo é encostado à mola e esta é comprimida de uma distância \( \Delta = 19 \;cm. \) \(\) Largamos o corpo e ele vai deslizar sobre o plano com um atrito de coeficiente \( \mu = 0.7 \) subindo o plano até parar instantâneamente \( \;. \) \(\) Determine a distância d, entre o ponto de altura máxima atingida pelo corpo e a posição de repouso da mola \( \;? \)\(\)

\(\)Uma corda de comprimento total L e densidade linear \( \mu = 83 \;g/m\; \) está enrolada no chão. Queremos elevar a extremidade da corda na vertical \( \;.\; \) \(\) Determine o trabalho necessário para elevar a extremidade da corda, desde o chão até uma altura \( H= 11 \;cm\;? \) \(\) Sugestão: Comece por calcular a força necessária para manter uma ponta da corda a uma altura y do chão \( \;. \)\(\)

\(\)Na figura dois corpos estão ligados por um fio fino, que passa por uma roldana de massa desprezável \( \;. \) \(\) O corpo \( m= 76 \;g \) parte do solo. O corpo \( M= 207 \;g \) é largado de uma altura \( d= 121 \;cm. \) \(\) Calcule a altura \( \text{x} \) que o corpo m deve subir de modo que a sua energia mecânica instantânea seja igual à do corpo \( \text{M} \;? \)\(\)

\(\)Na figura, apoiado no solo,o corpo de massa \( M= 6 \;kg\; \) está ligado, através de três roldanas fixas, a um corpo pendurado de massa \( m= 4 \;kg. \) Note que duas das roldanas estão ligadas a uma parede fixa e a terceira roldana está ligada ao corpo M \( \;.\; \) Despreze a massa do fio de ligação, considerado inextensível, bem como qualquer atrito. Use \( g= 9.8 \;m\left/s^2.\right. \) \(\) Determine a aceleração do corpo M em relação ao solo \( \;? \) \( \) \( \)\(\)

\(\)Considere o sistema mecânico da figura. Um macaco de massa \( M= 30 \;kg \) puxa uma corda que passa por uma roldana e liga a um bloco de massa \( m= 66 \;kg \) colocado sobre uma superfície horizontal, onde pode escorregar \( \;.\; \) Despreze o atrito e use \( g= 9.8 \;m\left/s^2.\right. \) \(\) O macaco parte do chão e sobe a corda com uma velocidade constante \( v_0= 2.8 \;m/s. \) \(\) Determine a altura máxima atingida pelo macaco em relação ao solo \( \;? \) \( \)\(\)

\(\)Na figura estão 3 corpos: um carrinho de massa \( M= 27 \;kg, \) em cima dele um bloco de massa \( m_1= 12 \;kg\;,\; \) ligado a este por um fio e uma roldana está pendurado verticalmente um segundo corpo de massa \( m_2= 2 \;kg.\; \) \(\) Despreze as massas do fio e da roldana bem como o atrito em todas as superfícies e use \( g= 9.8 \;m\left/s^2.\right. \) \(\) Aplica-se uma força horizontal sobre o carrinho (ver figura) com uma amplitude \( \left| \vec{\mathbf{F}} \right| = 264 \;N.\; \) \(\) Determine a aceleração adquirida pelo carrinho \( \text{M} \;? \) \( \)\(\)