\(\)Um drone voa horizontalmente com uma velocidade constante \( U= 5 \;m/s. \) Uma pedra é lançada com velocidade inicial \( v_o= 23 \;m/s,\; \) segundo um ângulo \( \alpha = 72 \;{}^{\circ}, \) indicado na figura. Este é o ângulo de visão do drone pelo observador. Sabemos que a pedra consegue atingir o drone. \(\) Determine a altura \( \text{h} \) do voo do drone \( \;? \)\(\)
\(\)Um corpo é lançado com velocidade inicial \( v_o= 22 \;m/s,\; \) segundo um ângulo \( \alpha \) com a horizontal. \(\) O corpo está na base de um plano inclinado de ângulo \( \Phi = 25 \;{}^{\circ},\; \) (ver figura). \(\) Qual o ângulo de lançamento que corresponde ao alcance máximo L ao longo do plano \( \;? \)\(\)
\(\)Na figura dois corpos estão ligados por um fio fino, que passa por uma roldana de massa desprezável \( \;. \) \(\) O corpo \( m= 76 \;g \) parte do solo. O corpo \( M= 207 \;g \) é largado de uma altura \( d= 121 \;cm. \) \(\) Calcule a altura \( \text{x} \) que o corpo m deve subir de modo que a sua energia mecânica instantânea seja igual à do corpo \( \text{M} \;? \)\(\)
\(\)Dois corpos pontuais, A e B, partem do mesmo ponto e deslocam-se na mesma direcção, com as velocidades representadas na figura. \(\) O corpo A parte no instante \( t= 0 \;s\; \) e o corpo B parte no instante \( t_1= 10 \;s\;.\; \) \(\) No instante \( t_2= 20 \;s\; \) têm a mesma velocidade. \(\) Determine o instante t em que os dois corpos se vão encontrar \( \;? \)\(\)
\(\)Na figura um corpo de massa \( m= 175 \;g \) e uma mola de constante \( K= 267 \;N/m\; \) estão sobre um plano inclinado de ângulo \( \theta = 33 \;{}^{\circ}. \) \(\) O corpo é encostado à mola e esta é comprimida de uma distância \( \Delta = 19 \;cm. \) \(\) Largamos o corpo e ele vai deslizar sobre o plano com um atrito de coeficiente \( \mu = 0.7 \) subindo o plano até parar instantâneamente \( \;. \) \(\) Determine a distância d, entre o ponto de altura máxima atingida pelo corpo e a posição de repouso da mola \( \;? \)\(\)
\(\)Na figura um corpo desliza sem atrito, ao longo de uma calha. Parte de uma altura \( h= 138 \;cm, \) onde se encontra inicialmente em repouso \( \;. \) \(\) No final da rampa encontra uma calha semicircular, de diâmetro exactamente igual à altura de onde partiu \( \;. \) \(\) Determine a altura máxima alcançada pelo corpo, enquanto encostado à calha \( \;? \)\(\)
\(\)Na figura um pêndulo de massa \( m= 133 \;g \) e comprimento \( L= 70 \;cm\; \) é largado da posição A que faz um ângulo \( \theta _1= 45 \;{}^{\circ} \) com a vertical. Na descida bate num prego colocado na vertical, à distância \( \text{x} \) do ponto pivot fixo, e dobra passando a executar uma trajectória de raio diferente \( \;. \) \(\) Sabemos que a tensão de ruptura do fio é \( K= 5.3 \) vezes o peso do pêndulo \( \;. \) \(\) Determine a distância máxima x onde deve ser colocado o prego, de modo que o fio não parta quando o atinge \( \;? \)\(\)
\(\)Uma corda de comprimento total L e densidade linear \( \mu = 83 \;g/m\; \) está enrolada no chão. Queremos elevar a extremidade da corda na vertical \( \;.\; \) \(\) Determine o trabalho necessário para elevar a extremidade da corda, desde o chão até uma altura \( H= 11 \;cm\;? \) \(\) Sugestão: Comece por calcular a força necessária para manter uma ponta da corda a uma altura y do chão \( \;. \)\(\)
\(\)Na figura um automóvel sobe primeiro uma rampa de inclinação \( \alpha = 16 \;{}^{\circ} \) com uma velocidade constante \( v_1= 14 \;m/s.\; \) \(\) Desce depois uma rampa idêntica com velocidade constante \( v_2= 23 \;m/s. \) \(\) Segue então num plano horizontal, agora com velocidade constante \( v_0 \;. \) \(\) Sabemos que nos três casos a potência do seu motor manteve-se constante. Nota: Na figura estão representadas as três forças F que o motor faz, nas três situações \( \;. \) \(\) Determine a velocidade do automóvel no plano horizontal \( \;? \) \( \)\(\)
\(\)Na figura, apoiado no solo,o corpo de massa \( M= 6 \;kg\; \) está ligado, através de três roldanas fixas, a um corpo pendurado de massa \( m= 4 \;kg. \) Note que duas das roldanas estão ligadas a uma parede fixa e a terceira roldana está ligada ao corpo M \( \;.\; \) Despreze a massa do fio de ligação, considerado inextensível, bem como qualquer atrito. Use \( g= 9.8 \;m\left/s^2.\right. \) \(\) Determine a aceleração do corpo M em relação ao solo \( \;? \) \( \) \( \)\(\)
\(\)Considere o sistema mecânico da figura. O corpo \( M= 18 \;kg \) escorrega, sem atrito, sobre o plano horizontal. \(\) O corpo \( m= 8 \;kg\; \) é puxado por um fio que passa numa roldana fixa em M. Por acção dessa força pode escorregar em cima de M, com um coeficiente de atrito cinético \( \mu _k= 0.3 \;. \) Use \( F= 37 \;N. \) \(\) Determine a aceleração horizontal do corpo superior m em relação ao corpo inferior M (positiva para a esquerda) \( \;? \) \( \) \( \)\(\)
\(\)Considere o sistema mecânico da figura, constituido por um prisma com massa \( M= 6 \;kg \) e ângulo \( \alpha = 40 \;{}^{\circ},\; \) sobre ele escorrega um corpo de massa \( m= 8 \;kg.\; \) Despreze o atrito em todas as superfícies e use \( g= 9.8 \;m\left/s^2.\right. \) \(\) Aplica-se sobre o prisma uma força horizontal de amplitude \( F= 9 \;N. \) \(\) Determine a aceleração adquirida pelo corpo m a escorregar sobre o prisma (em relação ao prisma) \( \;? \) \( \)\(\)
\(\)Na figura estão 3 corpos: um carrinho de massa \( M= 27 \;kg, \) em cima dele um bloco de massa \( m_1= 12 \;kg\;,\; \) ligado a este por um fio e uma roldana está pendurado verticalmente um segundo corpo de massa \( m_2= 2 \;kg.\; \) \(\) Despreze as massas do fio e da roldana bem como o atrito em todas as superfícies e use \( g= 9.8 \;m\left/s^2.\right. \) \(\) Aplica-se uma força horizontal sobre o carrinho (ver figura) com uma amplitude \( \left| \vec{\mathbf{F}} \right| = 264 \;N.\; \) \(\) Determine a aceleração adquirida pelo carrinho \( \text{M} \;? \) \( \)\(\)
\(\)Um automóvel parte do repouso com aceleração \( a= 8 \;m\left/s^2\right.,\; \) continua em movimento uniforme durante algum tempo. Depois trava até à paragem completa, com uma desaceleração igual, em módulo, à inicial (ver figura). \(\) Sabemos que o tempo total de deslocamento é \( T= 31 \;s\; \) e a velocidade média de todo o percurso é \( \lt v\gt = 13 \;m/s. \) \(\) Determine a duração \( T_2 \;\; \) do movimento uniforme \( \;? \)\(\)
\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=8\;Hz \) e uma amplitude \( A = 12\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.07\;kg/m. \) Determine a frequência angular ( \( \omega \) ) e apresente o resultado com 3 algarismos significativos. \( \)\(\)
\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=7\;Hz \) e uma amplitude \( A = 10\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.06\;kg/m. \) Determine a frequência angular ( \( \omega \) ) e apresente o resultado com 3 algarismos significativos. \( \)\(\)
\(\) Compare o valor da força gravítica que actua num astronauta à superfície da Terra com o valor da força gravítica que actua nesse astronauta quando se encontra numa nave numa órbita circular com \( 7000\;km \) de raio em torno da Terra. Considere que o astronauta tem massa \( 70\;kg \) e que o raio da Terra é de \( 6371\;km. \) \(\)
\(\)Compare o valor da força gravítica que atua num astronauta à superfície da Terra com o valor da força gravítica sentida por esse mesmo astronauta quando se encontra numa nave numa órbita circular com \( 7100\;km \) de raio em torno da Terra. Considere que o astronauta tem massa \( 80\;kg \) e que o raio médio da Terra é de \( 6371\;km. \) Apresente o resultado com dois algarismos significativos. \( \)\(\)
\(\)A força exercida sobre uma carga \( q = \frac{1}{2} \;C \) que se desloca com velocidade \( \vec{\mathbf{v}} = 2 \left(\vec{\mathbf{e}} _x-\vec{\mathbf{e}} _y-\vec{\mathbf{e}} _z\right) \;m/s\; \) num campo magnético \( \vec{\mathbf{B}} = -3 \vec{\mathbf{e}} _z \;T\;(Tesla) \) designa-se Força de Lorentz \( \vec{\mathbf{F}} =q \vec{\mathbf{v}} \times \vec{\mathbf{B}} . \) \(\)Selecione qual das seguintes opções corresponde à resposta correta para \( \vec{\mathbf{F}} \;. \)\(\)
\(\) Usando a Lei de Gauss, determine o fluxo \( \Phi \) do campo \( \vec{\mathbf{E}} \) através de uma superfície hemisférica de raio \( a = 8\; cm\), quando campo é uniforme, com magnitude \(|\vec{\mathbf{E}} | = 4\; mV\;m^{-1}\), e faz um ângulo \(\alpha = 9\; {}^{\circ}\) com o eixo do hemisfério, no sentido pólo-equador. \(\)