\(\)O gráfico 1 representa a velocidade de um objeto em função do tempo. \( \) Qual dos gráficos A a E representa melhor a aceleração desse objeto? \( \;\; \)\(\)

\(\)O objeto da figura tem massa \( M = 6.8 \;kg\; \) e é empurrado por uma força \( \vec{\mathbf{F}} \) contra uma parede vertical. O coeficiente de atrito estático entre o objeto e a parede é \( \mu _s= 0.5 \;\;.\; \) \(\)Qual é o valor mínimo da força \( \vec{\mathbf{F}} \) para manter o objeto em equilíbrio? \( \)\(\)

\(\)O gráfico 1 representa a velocidade de um objeto em função do tempo. \( \) Qual dos gráficos A a E representa melhor a aceleração desse objeto? \( \;\; \)\(\)

\(\)Um objeto, com massa \( m = 158 \;kg\; \) está inicialmente no chão, em repouso. Num dado instante, começa a ser levantado por um guindaste, com uma aceleração constante \( \vec{\mathbf{a}} = 2.9 \;\vec{\mathbf{e}} _y\;\left(ms^{-2}\right).\; \) \(\)Qual é o módulo da tensão exercida no cabo que liga o objeto ao guindaste? \( \)\(\)

\(\)A força \( \vec{\mathbf{F}} = 3 \;t\;+\; \) \( 2 \;\vec{\mathbf{e}} _x\;(N)\; \) depende do tempo \( t \) mas tem direção e sentido constantes. Esta força é aplicada ao objeto da figura, de massa \( m = 187 \;kg,\; \) que está inicialmente em repouso e que se pode deslocar sem atrito. \( \) \(\)Qual é o trabalho realizado pela força \( \vec{\mathbf{F}} \) ao fim de \( \Delta t = 8.5 \;s\;?\; \)\(\)

\(\)Um objeto pontual está à altura \( h = 22 \;m\; \) do chão e é lançado para cima, com velocidade inicial \( \vec{\mathbf{v}} _0 = 5 \;\vec{\mathbf{e}} _y\;\left(ms^{-1}\right).\; \) \(\)Quanto tempo, após o lançamento, demora a atingir o chão? \( \;\; \)\(\)

\(\)Um bloco, com massa \( m = 6. \;kg, \) move-se sem atrito sobre uma superfície horizontal. O bloco desloca-se com velocidade \( \vec{\mathbf{v}} = 1.5 \;\vec{\mathbf{e}} _x\;\left(ms^{-1}\right) \) quando choca com uma mola, de constante de restituição \( k = 800. \;Nm^{-1}\;.\; \) \(\)Qual é a distância máxima de compressão da mola? \( \;\; \)\(\)

\(\)A barra de massa desprezável da figura e o objeto, com massa \( M \;, \) estão em equilíbrio e apoiados nos ombros das duas pessoas. O ponto de suspensão do objeto está à distância \( d_1= 0.8 \;m \) da pessoa A e à distância \( d_2= 3.2 \;m\; \) da pessoa B, sendo a distância entre elas \( L \;=\;d_1+d_2\;. \) A força que A exerce sobre a barra é \( F_A= 180. \;N.\; \) \(\)Qual é a massa do objeto? \( \;\; \)\(\)

\(\)A roldana da figura pode rodar sem atrito em torno do seu eixo, tem raio \( R = 0.3 \;m \) e momento de inércia \( I = 84 \;kg\;m^2\;. \) Enrolado na roldana, está um fio inextensível e de massa desprezável. A extremidade livre desse fio suporta um objeto, de massa \( m = 8.7 \;kg\;. \) A aceleração angular da roldana é \( \alpha = 0.3 \;rad\;s^{-2}\;. \) \(\)Qual é o valor da tensão exercida no fio? \( \;\; \)\(\)

\(\)O peso de um dado objeto na Lua é \( \;1/6 \) do seu peso na Terra. \( \) Se o objeto se mover com a mesma velocidade, na Terra e na Lua, \( \) qual é a relação entre as suas energias cinéticas? \( \)\(\)

\(\)O cilindro maciço da figura tem massa \( m = 60 \;kg \) e raio \( R= 0.15 \;m.\; \) O cilindro roda, sem deslizar, numa superfície horizontal, com velocidade linear \( \vec{\mathbf{v}} = 9.5 \;\vec{\mathbf{e}} _x\;\left(m\;s^{-1}\right), \) e sobe um plano inclinado. \( \) \(\)Qual é a altura máxima \( h \;\; \) que o cilindro pode subir no plano inclinado? \( \)\(\)

\(\)O movimento representado na figura é harmónico simples. \( \) Em qual das configurações (A a E) se mostra o objeto no instante em que o módulo da aceleração é máximo? \( \)\(\)

\(\)A figura representa o deslocamento de um objeto, em função do tempo. \( \) \(\)Qual é a frequência linear deste movimento? \( \;\; \)\(\)

\(\)O movimento representado na figura é harmónico simples. \( \) Em qual das configurações (A a E) se mostra o objeto no instante em que a aceleração é nula? \( \)\(\)

\(\)O som emitido pela sirene do barco da figura é ouvido simultaneamente pelo mergulhador e por uma pessoa que está em terra. A sirene está colocada à altura \( s = 2.2 \;m \) acima da superfície da água e a pessoa em terra está à distância \( d = 28 \;m \) da sirene. Considere que a velocidade de propagação do som na água é \( v_{agua}= \;\;1490\;ms^{-1} \) e no ar é \( v_{ar}= \;\;340\;ms^{-1}\;. \) \(\)Qual é a distância \( \;\;h \) entre a superfície da água e o mergulhador? \( \)\(\)

\(\)A figura representa o deslocamento de um objeto, em função do tempo. \( \) \(\)Qual é o período deste movimento? \( \;\; \)\(\)

\(\)O movimento representado na figura é harmónico simples. \( \) Em qual das configurações (A a E) se mostra o objeto no instante em que a velocidade é nula? \( \)\(\)

\(\)A figura representa o deslocamento de um objeto, em função do tempo. \( \) \(\)Qual é a frequência angular deste movimento? \( \;\; \)\(\)

\(\)O movimento representado na figura é harmónico simples. \( \) Em qual das configurações (A a E) se mostra o objeto no instante em que o módulo da velocidade é máximo? \( \)\(\)

\(\)O pêndulo físico da figura é constituído por uma barra homogénea, de secção circular, com comprimento \( L = 3.2 \;m \) e massa \( M = 5.9 \;kg. \) A barra roda livremente em torno de uma das extremidades e o seu momento de inércia, relativamente a este eixo, é \( I = \;M\;L^2\;/3 \left(kg\;m^2\right). \) \(\)Na aproximação dos pequenos ângulos, qual é o período de oscilação deste pêndulo? \( \;\; \)\(\)