\(\)Num simulador de vôo de um Boeing 737 pretende-se simular uma travagem do avião após uma aterragem. O comandante tem uma pista de \( L=1400\;m \) para parar e tocou a pista a \( 200\;km/h. \) A sensação de travagem é conseguida inclinando o módulo do simulador. Qual o ângulo a que se deve inclinar o módulo do simulador para simular esta travagem e para que o piloto sinta a mesma desaceleração? Apresente o resultado arredondado às centésimas. \( \)\(\)

\(\)Uma nave com \( 20\;m \) de comprimento encontra-se estacionada numa base espacial. Quando parte para uma viagem e atinge a velocidade cruzeiro, o seu comprimento medido a partir da base é de \( 10\;m. \) Qual o comprimento da nave para os seus tripulantes? \( \)\(\)

\(\)Um engenheiro de uma plataforma espacial informa a Terra que uma estrutura (parede) existente na plataforma se apresenta inclinada na sequência de uma colisão de um veículo contra a mesma. A parede, que no referencial da plataforma tinha de altura antes da colisão \( H^*=20\;m \) apresenta-se agora inclinada num ângulo \( \theta ^*=40\;{}^{\circ} \) medido em relação à normal ao chão, isto é em relação ao eixo \( y^*. \) A plataforma espacial desloca-se em relação à Terra a uma velocidade \( V_p=0.73\;c,\; \) onde \( c \) é a velocidade da luz no vácuo. \( \) Para poder entender se o grau de gravidade que o engenheiro na plataforma atribui aos estragos é igual ao grau de gravidade que o engenheiro na Terra entende como mais correto, calcule qual é o ângulo \( \theta \) de inclinação da parede em relação ao eixo \( y \) medido por um engenheiro no monitor do seu computador na Terra . Nota: pode dar o valor com duas casas decimais. \( \)\(\)

\(\)Considere o sistema da pergunta anterior constituído pela plataforma, canhão e bala. \( \) Calcule a velocidade da plataforma com o canhão logo após a bala ter sido disparada, \( V_f {\bf e}_x\;.\; \) Note que a velocidade é unicamente na direção do carril. Dê a resposta com duas casas decimais. \( \)\(\)

\(\)Considere um condutor que se desloca de automóvel na via pública em trajetória retilínea e a uma velocidade constante com módulo \( v_i= 60 \;km/h.\; \) Num dado instante o condutor avista um peão que, por ter prioridade, decide atravessar uma passadeira localizada a uma distância inicial \( D_i= 30 \;m. \) A aceleração do veículo durante a manobra de travagem é \( a= -6.0 \;m\left/s^2.\right. \) Calcule se o condutor consegue travar sem atropelar o peão ou, em alternativa, com que velocidade atropela o peão. \( \) \(\)Nota: tome em consideração que o automóvel continua a deslocar-se com velocidade constante \(v_i \) durante o tempo de reação. Este tempo de reação corresponde ao intervalo de tempo entre o instante em que o condutor avistou o peão e o instante em que reagiu e começou a travar e é igual a um segundo. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=3\;Hz \) e uma amplitude \( A = 16\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=10\;m/s. \) A densidade linear da corda é \( \mu =0.04\;kg/m. \) Determine o número de onda \( (k) \) e apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)De uma altura \( h= 3 \;m, \) atira-se uma bola para cima, com velocidade inicial \( v_o= 2 \;m\;s^{-1}. \) Considere como sentido positivo do movimento o sentido da velocidade inicial. \( \) A altura máxima é atingida quando a velocidade é: \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=7\;Hz \) e uma amplitude \( A = 10\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.06\;kg/m. \) Determine a frequência angular ( \( \omega \) ) e apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Qual o valor da velocidade de propagação das ondas na corda? \( \) Dê a resposta em metro por segundo \( \;(m/s).\; \)\(\)

\(\)Uma viatura descreve uma trajetória circular de raio \( R= 50 \;m \) num plano horizontal. A viatura pesa \( P= 9000 \;N. \) Nas 4 rodas atua uma força de atrito total \(\vec{\mathbf{F_a}} \) que depende do coeficiente de atrito estático entre as rodas e o asfalto, \(\mu _e \) (ver figura). \( \) O valor máximo para o coeficiente de atrito estático é \( \mu _{e,\max }= 0.6 \;. \) Calcule o valor máximo possível da velocidade para o carro conseguir descrever essa curva sem derrapar. \( \) Apresente o resultado em unidades \(km/h \) e com duas casas decimais. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=5\;Hz \) e uma amplitude \( A = 12\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.05\;kg/m. \) Determine a potência necessária em \( \;W \) para manter a corda a vibrar. Apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)A tensão aplicada na extremidade da corda é \( T= 25. \;N.\; \) Qual o valor da densidade linear da corda? \( \) Dê a resposta em \( \;kg/m.\; \)\(\)

\(\)Qual a relação entre o módulo da força que o atleta exerce com a mão direita na vara para cima e o módulo da força que o atleta exerce com a mão esquerda para baixo, \( F_c/F_B \;? \) Dê a resposta com duas casas decimais. \( \)\(\)

\(\)No seguimento da situação descrita acima, o ADt recebe a caixa e agarra-a. A caixa chega a ADt com uma velocidade \( \vec{\mathbf{v_c}} = 20 \vec{\mathbf{e}} _x \;cm\;s^{-1}. \) Posteriormente ADt devolve a caixa para AEsq. O amigo que está a observar (AO) consegue verificar que a velocidade da caixa que ADt devolve a AEsq é igual em módulo mas de sentido contrário ao da velocidade que recebeu, ou seja \( \vec{\mathbf{v^*{}_c}} = -20 \vec{\mathbf{e}} _x \;cm\;s^{-1}. \) Calcule o módulo da velocidade de ADt depois de devolver a caixa a AEsq, \( v_{ADt} \;. \) Considere que tanto AEsq como ADt pesam \( P= 700 \;N,\; \) o peso da plataforma é \( P_{pl}= 110 \;N, \) a caixa pesa \( P_{caixa}= 60 \;N.\; \) Apresente o resultado em unidades \(cm\) \( s^{-1} \) e com duas casas decimais. \( \)\(\)

Considere o módulo das tensões aplicadas na massas. Nas condições da alínea anterior qual das seguintes expressões é verdadeira? \( \)\(\)

\(\)Duas bolas, azul e branca, são largadas simultaneamente de um ponto a \( h= 2 \) metros do chão. A bola azul tem uma velocidade inicial nula, enquanto que a bola branca é atirada na horizontal com velocidade inicial \( v_o= 2 \;m\;s^{-1}. \) Compare o tempo de chegada ao chão da bola azul e da bola branca. Podemos afirmar que: \( \)\(\)

Nas condições da alínea anterior, e assumindo que o ângulo de incidência é de \( \theta _C=63\;{}^{\circ} \) calcule o valor limite de \( n_c \) para que ocorra reflexão total no interface cilindro-capa. \( \)\(\)

\(\)Uma plataforma circular em forma de disco gira no plano horizontal sobre uma superfície sem atrito, como representado na figura da pergunta anterior. A plataforma tem massa \( M= 200 \;kg \) e um raio \( R= 4 \;m.\; \) Um estudante, com uma massa \( m= 70 \;kg\; \) e inicialmente situado na extremidade da plataforma, caminha lentamente desde a extremidade e no sentido do centro da plataforma. Quando o estudante está na extremidade da plataforma a velocidade angular do sistema (estudante + plataforma) é \( \omega _i= 2 \;rad/s.\; \) \(\)Considere que quando se encontra num ponto situado a uma distância \( r_f= 0.4 \;m \) do centro de rotação decide parar (relativamente a plataforma). Calcule \( \Delta E_c=E_{c,f}- E_{c,i} \;, \) isto é, calcule a diferença entre a energia cinética do sistema (estudante+plataforma) quando o estudante parou sobre a plataforma , \(E_{c,f} \), e a energia cinética no início em que o estudante começou a andar sobre a plataforma \(E_{c,i} \). \( \)\(\)

\(\)O nosso praticante de snowboard escolheu uma pista cuja inclinação é de \( 13 \;{}^{\circ} \) , tal como se pode observar na figura. Durante a descida, a força de atrito cinético entre a prancha e a superfície da pista não é completamente desprezável, e apresenta um coeficiente com o valor de \( \mu _c= 0.11 \) . Considere nos seus cálculos \( g= 9.8 \;m\;s^{-2} \) . Qual o módulo da aceleração a que está sujeito o snowboarder durante o seu movimento de descida? Apresente o seu resultado com duas casas decimais. \( \)\(\)

\(\)A figura representa uma corda com secção uniforme. A sua densidade é \(\rho =1 \; kg\;m^{-3}\) e a secção é \(A=0.1 \; m^2.\) Qual é a densidade linear de massa \(\mu \) = massa / comprimento ? \( \; \)\(\)