\(\)A figura do lado esquerdo representa a trajetória de uma bola. \( \) Dos vários sentidos mostrados no lado direito da figura, qual é o da aceleração que atua na bola quando esta está no ponto \( \text{R} \) indicado? \( \)\(\)
\(\)Uma bola é largada no ponto \( \text{O} \) e passa por uma janela, que tem altura \( \text{h} \) , no intervalo de tempo \( t_{AB} \) . No referencial indicado, qual dos seguintes pares de equações descreve o movimento da bola? \( \)\(\)
\(\)Uma pena, de massa \( m_1 \) , e uma pedra, de massa \( \;m_2\gt m_1 \) , caem em queda livre no interior de um tubo , do qual se extraiu o ar. \( \) Se \( F_{pena} \) e \( F_{pedra} \) forem as forças gravíticas exercidas sobre a pena e a pedra, respetivamente, qual das seguintes hipóteses está certa? \( \) \( \)\(\)
\(\)Quando se aplica uma força \( \text{F} \) a um bloco, de massa \( m_1 \) , a aceleração desse bloco é \( a_1 \) . Quando se aplica a mesma força a um bloco de massa \( m_2 \) , aceleração é \( a_2 = 2 a_1 \) . Se se aplicar a mesma força aos dois blocos ligados, de massa \( m_1+m_2 \) , qual é a aceleração \( a_3 \) do conjunto? \( \)\(\)
\(\)Na Terra, um astronauta dá um pontapé numa bola de bowling e magoa-se. \( \) Um ano mais tarde, na Lua, acha que é boa ideia dar um pontapé, com a mesma força, na mesma bola. \( \) A dor que sente agora no pé é \( \)\(\)
\(\)No espaço, uma bola de bowling (1) e uma bola de ténis (2) atraem-se mutuamente, devido às forças gravitacionais. \( a_1 \) é a aceleração de (1) e \( a_2 \) é a aceleração de (2). \( \) Qual das seguintes afirmações, relativamente aos módulos destas acelerações,está certa? \( \)\(\)
\(\)No espaço, uma bola de bowling (1) e uma bola de ténis (2) atraem-se mutuamente, devido às forças gravitacionais. \( F_{12} \) é a força que (1) exerce em (2) e \( F_{21} \) é a força que (2) exerce sobre (1). \( \) Qual das seguintes afirmações, relativamente aos módulos destas forças, está certa? \( \)\(\)
\(\)Considere um ponto que se desloca num movimento circular uniforme \( \vec{\mathbf{r}} (t)= 2 \vec{\mathbf{e}} _x \cos (0.60 t+1.81)+2 \vec{\mathbf{e}} _y \sin (0.60 t+1.81) \) Calcule a sua velocidade quando chega ao ponto \( \vec{\mathbf{r}} _1 \) passados \( t= 2 \;s, \) sabendo que parte do ponto inicial \( \vec{\mathbf{r}} _o. \) Escreva o resultado em coordenadas do referencial \( \left\{\vec{\mathbf{e}} _r,\vec{\mathbf{e}} _{\theta }\right\} \)\(\)
\(\)Considere um ponto que se desloca num movimento circular uniforme \( \vec{\mathbf{r}} (t)= 2 \vec{\mathbf{e}} _x \cos (0.60 t+1.11)+2 \vec{\mathbf{e}} _y \sin (0.60 t+1.11) \;. \) Calcule a sua aceleração quando chega ao ponto \( \vec{\mathbf{r}} _1 \) passados \( t= 2 \;s, \) sabendo que parte do ponto inicial \( \vec{\mathbf{r}} _o. \) Escreva o resultado em coordenadas do referencial \( \left\{\vec{\mathbf{e}} _r,\vec{\mathbf{e}} _{\theta }\right\} \)\(\)
\(\)Considere um ponto que se desloca num movimento circular acelerado \( \vec{\mathbf{r}} (t)= 2 \vec{\mathbf{e}} _x \cos \left(0.24-0.17 t^2\right)+2 \vec{\mathbf{e}} _y \sin \left(0.24-0.17 t^2\right) \;. \) Calcule a sua aceleração radial quando chega ao ponto \( \vec{\mathbf{r}} _1 \) passados \( t= 2 \;s, \) sabendo que parte do ponto inicial \( \vec{\mathbf{r}} _o. \) Escreva o resultado em coordenadas do referencial \( \left\{\vec{\mathbf{e}} _r,\vec{\mathbf{e}} _{\theta }\right\} \)\(\)
\(\)Considere um ponto que se desloca num movimento circular acelerado \( \vec{\mathbf{r}} (t)= 2 \vec{\mathbf{e}} _x \cos \left(0.11 t^2+2.88\right)+2 \vec{\mathbf{e}} _y \sin \left(0.11 t^2+2.88\right) \;. \) Calcule a sua aceleração radial quando chega ao ponto \( \vec{\mathbf{r}} _1 \) passados \( t= 2 \;s, \) sabendo que parte do ponto inicial \( \vec{\mathbf{r}} _o. \) Escreva o resultado em coordenadas do referencial \( \left\{\vec{\mathbf{e}} _r,\vec{\mathbf{e}} _{\theta }\right\} \;. \)\(\)
\(\)Os dois blocos são iguais e têm massa \( \text{m} \;. \) Em relação à força normal nas duas situações (1) e (2), qual das seguintes hipóteses está certa? \( \)\(\)
\(\)O objeto é o mesmo, nas duas configurações mostradas na figura. \( T_1 \;e \) \( T_2 \) são as tensões exercidas nas cordas de suporte. Qual é a relação entre os módulos de \( T_1 \;e \) \( T_2 \;? \)\(\)
\(\)A figura mostra uma pessoa em cima de uma balança, dentro de um elevador, e o diagrama de forças correspondente. \( \) Quando o elevador está parado, a escala da balança indica \( S = \;500\;N. \) Admita que, num dado instante, o cabo que sustenta o elevador se parte e o elevador começa a cair em queda livre. \( \) Nestas condições, qual das seguintes hipóteses está certa? \( \)\(\)
\(\)A figura mostra uma pessoa em cima de uma balança, dentro de um elevador, e o diagrama de forças correspondente. \( \) Quando o elevador está parado, a escala da balança indica \( S = \;500\;N. \) Admita que, num dado instante, o elevador está a subir e a desacelerar, com aceleração \( a = \;g/10. \) Nestas condições, qual das seguintes hipóteses está certa? \( \)\(\)
\(\)Explique porque é que \( \int _0^t\tau ^2{d} \tau = \frac{t^3}{3} \;. \)\(\)
\(\)Na figura as carruagens de um comboio são carregadas com areia enquanto se deslocam com uma velocidade constante \( v= 3.8 \;m/s. \) \(\) A areia cai segundo um ângulo \( \theta = 37 \;{}^{\circ}\; \) com a vertical, a uma taxa de \( 420 \;kg/s\; \) e com uma velocidade \( u= 1.5 \;m/s. \) \(\) Determine a força F necessária para manter a carruagem em movimento uniforme \( \;? \) \( \) \( \) \( \)\(\)
\(\)Na figura um prato circular homogéneo, de raio \( R= 50 \;cm\; \) tem um buraco circular de raio \( r= 10 \;cm. \) \(\) Use o sistema de coordenadas da figura, onde o centro do buraco está sobre o eixo dos y \( \;.\; \) \(\) Determine a coordenada y do centro de massa do prato \( \;?\; \) \(\) Sugestão: O buraco pode ser representado por dois discos sobrepostos, um de massa m e outro de massa --m \( \;.\; \) \( \) \( \) \( \)\(\)
\(\)Os dois corpos da figura têm massas diferentes, \( M_A\neq M_B \;,\; \) e podem deslocar-se sem atrito ao longo da trajetória semicircular vertical indicada, de raio \( R= 58 \;cm. \) Larga-se o corpo A, que vai colidir elasticamente com B. \(\) IApós o choque, os dois corpos adquirem a mesma velocidade em módulo, embora de sentidos contrários \( \;. \) \(\) Qual é a altura máxima \( \text{h} \;,\; \) medida a partir do ponto mais baixo da trajetória, que o corpo B consegue atingir \( \;\;? \) \(\) Sugestão: Comece por calcular a relação entre as massas dos 2 corpos \( \;. \) \( \) \( \)\(\)
\(\)A e B são 2 esquiadores sobre uma pista de gelo a participarem num jogo. O objectivo do jogo é chegar primeiro à taça, puxando a corda esticada \( \;.\; \) \(\) O esquiador A tem massa \( M_A= 83 \;kg\; \) e o esquiador B tem massa \( M_B= 76 \;kg.\; \) \(\) Distam entre si inicialmente \( 2d= 6.7 \;m\; \) e cada um deles segura a ponta de uma corda (de massa desprezável) esticada. Puxando e encurtando a corda tentam aproximar-se de uma taça, que inicialmente está a meio da distância entre eles \( \;.\; \) No sistema de coordenadas da figura a caneca está em x = 0. Inicialmente A está em -d e B em d \( \;.\; \) Quando um deles chegar primeiro à taça e ganhar, onde está o outro \( \;? \) \( \)\(\)