\(\)O peso de um dado objeto na Lua é \( \;1/6 \) do seu peso na Terra. \( \) Se o objeto se mover com a mesma velocidade, na Terra e na Lua, \( \) qual é a relação entre as suas energias cinéticas? \( \)\(\)
\(\)A força \( \vec{\mathbf{F}} = 3 \;t\;+\; \) \( 2 \;\vec{\mathbf{e}} _x\;(N)\; \) depende do tempo \( t \) mas tem direção e sentido constantes. Esta força é aplicada ao objeto da figura, de massa \( m = 187 \;kg,\; \) que está inicialmente em repouso e que se pode deslocar sem atrito. \( \) \(\)Qual é o trabalho realizado pela força \( \vec{\mathbf{F}} \) ao fim de \( \Delta t = 8.5 \;s\;?\; \)\(\)
\(\)Um objeto, com massa \( m = 158 \;kg\; \) está inicialmente no chão, em repouso. Num dado instante, começa a ser levantado por um guindaste, com uma aceleração constante \( \vec{\mathbf{a}} = 2.9 \;\vec{\mathbf{e}} _y\;\left(ms^{-2}\right).\; \) \(\)Qual é o módulo da tensão exercida no cabo que liga o objeto ao guindaste? \( \)\(\)
\(\)O objeto da figura tem massa \( M = 6.8 \;kg\; \) e é empurrado por uma força \( \vec{\mathbf{F}} \) contra uma parede vertical. O coeficiente de atrito estático entre o objeto e a parede é \( \mu _s= 0.5 \;\;.\; \) \(\)Qual é o valor mínimo da força \( \vec{\mathbf{F}} \) para manter o objeto em equilíbrio? \( \)\(\)
\(\)Um objeto pontual está à altura \( h = 22 \;m\; \) do chão e é lançado para cima, com velocidade inicial \( \vec{\mathbf{v}} _0 = 5 \;\vec{\mathbf{e}} _y\;\left(ms^{-1}\right).\; \) \(\)Quanto tempo, após o lançamento, demora a atingir o chão? \( \;\; \)\(\)
\(\)O gráfico 1 representa a velocidade de um objeto em função do tempo. \( \) Qual dos gráficos A a E representa melhor a aceleração desse objeto? \( \;\; \)\(\)
\(\)O gráfico 1 representa a velocidade de um objeto em função do tempo. \( \) Qual dos gráficos A a E representa melhor a aceleração desse objeto? \( \;\; \)\(\)
\(\)O gráfico 1 representa a velocidade de um objeto em função do tempo. \( \) Qual dos gráficos A a E representa melhor a aceleração desse objeto? \( \;\; \)\(\)
No dia seguinte, a situação repetiu-se, mas o seu colega decidiu atirar-lhe a lancheira com uma massa \( m_l= 2. \;kg \) mesmo antes de o barco partir. A lancheira é atirada com uma velocidade \( v_{0x}= 3.8 \;m\;s^{-1}. \) Ao receber o pacote, o barco, que estava desatracado, começou a mover-se. Assustando-se, o rapaz dentro do barco decide atirar a lancheira de volta ao seu colega com a mesma velocidade \( v_{0x} \) em relação ao cais. \( \) Sabendo que o rapaz que está no barco têm uma massa de \( m= 80 \;kg, \) qual a velocidade do barco quando a lancheira chega ao cais? Menospreze o atrito da água sobre o movimento do barco e apresente o resultado com 3 casas decimais. \( \)\(\)
O rapaz partiu para o seu passeio de barco mas ao fim de 5 segundos o seu colega viu que se tinha esquecido da lancheira que havia preparado. Decide então fazer um lançamento horizontal para lhe passar a lancheira que tem uma massa de \( m_l= 2.5 \;kg. \) Sabendo que o o barco se desloca em todos os momentos a uma velocidade constante de \( v= 2.1 \;m\;s^{-1}, \) e que a altura do lançamento é de \( y_0= 1.5 \;m, \) qual a velocidade mínima para que a lancheira atinja o barco? Assuma que a lancheira sai da ponta da plataforma onde estava encostado o barco e que a aceleração gravítica é de \( g= 9.8 \;m\;s^{-2}. \)\(\)
\(\)Dois rapazes decidiram tirar umas férias junto de um lago. Um deles decidiu pegar num barco a motor de massa \( M= 300 \;kg \) e ir dar um passeio pelo lago, enquanto o outro ficou no cais a pescar. \( \) O peso conjunto dos dois rapazes é de \( P= 1568. \;N,\; \) e ambos têm o mesmo peso. Qual a massa do sistema (rapaz + barco)? Assuma que a aceleração gravítica \( g = 9.8 \;m\;s^{-2}. \)\(\)
\(\)Um engenheiro de uma plataforma espacial informa a Terra que uma estrutura (parede) existente na plataforma se apresenta inclinada na sequência de uma colisão de um veículo contra a mesma. A parede, que no referencial da plataforma tinha de altura antes da colisão \( H^*=20\;m \) apresenta-se agora inclinada num ângulo \( \theta ^*=40\;{}^{\circ} \) medido em relação à normal ao chão, isto é em relação ao eixo \( y^*. \) A plataforma espacial desloca-se em relação à Terra a uma velocidade \( V_p=0.73\;c,\; \) onde \( c \) é a velocidade da luz no vácuo. \( \) Para poder entender se o grau de gravidade que o engenheiro na plataforma atribui aos estragos é igual ao grau de gravidade que o engenheiro na Terra entende como mais correto, calcule qual é o ângulo \( \theta \) de inclinação da parede em relação ao eixo \( y \) medido por um engenheiro no monitor do seu computador na Terra . Nota: pode dar o valor com duas casas decimais. \( \)\(\)
\(\)Na figura um cubo de gelo escorrega sobre uma esfera de aço fixa, de raio \( R= 43 \;cm,\; \) a partir do topo, sem velocidade inicial. Despreze qualquer atrito \( \;.\; \) \(\) Determine a distância \( \text{d} \) horizontal entre o ponto de largada e o ponto de contacto do cubo de gelo com o solo, depois de perder o contacto com a esfera \( \;?\; \) \(\) SUGESTÃO: Comece por calcular o ângulo \( \theta \) em que o cubo perde o contacto com a esfera \( \;.\; \)\(\)
\(\)Um cubo de gelo escorrega sobre uma esfera de aço a partir do topo e sem velocidade inicial, como indicado na figura. A esfera tem raio \( R= 28. \;cm,\; \) a massa do cubo de gelo é \( m= 17. \;g. \) Despreze qualquer atrito entre o gelo e a esfera \( \;.\; \) \(\) Calcule o ângulo \( \theta \) em que o cubo de gelo perde o contacto com a esfera \( \;.\; \) \( \)\(\)
\(\)Os dois corpos da figura têm massas diferentes, \( M_A\neq M_B \;,\; \) e podem deslocar-se sem atrito ao longo da trajetória semicircular vertical indicada, de raio \( R= 58 \;cm. \) Larga-se o corpo A, que vai colidir elasticamente com B. \(\) IApós o choque, os dois corpos adquirem a mesma velocidade em módulo, embora de sentidos contrários \( \;. \) \(\) Qual é a altura máxima \( \text{h} \;,\; \) medida a partir do ponto mais baixo da trajetória, que o corpo B consegue atingir \( \;\;? \) \(\) Sugestão: Comece por calcular a relação entre as massas dos 2 corpos \( \;. \) \( \) \( \)\(\)
\(\)Na figura a carruagem de massa \( M= 81 \;kg,\; \) tem um túnel escavado, desde a superfície lateral até ao topo. A diferença de nível entre a entrada e a saída é \( H= 160. \;cm. \) \(\) Queremos lançar uma esfera, de massa \( m= 2 \;kg,\; \) que percorra todo o túnel ,saia pelo topo e suba acima, até uma altura \( h= 80. \;cm. \) \(\) Para o conseguir qual deverá ser a sua velocidade inicial mínima \( v_0= \;?\; \) \( \) \( \) \( \)\(\)
\(\)Na figura estão dois prismas idênticos, de inclinação igual a 45 graus e massa \( M= 8.2 \;kg\;. \) Encontram-se em repouso no plano horizontal, ao longo do qual se podem deslocar sem atrito \( \;. \) \(\) Uma bola de massa \( m= 410 \;g,\; \) largada de uma altura \( H= 50 \;cm,\; \) choca elasticamente com as superfícies dos dois prismas (ver Figura) e volta a subir verticalmente \( \;.\; \) \(\) Admita que a trajectória entre as duas colisões elásticas pode ser aproximada por uma linha recta horizontal \( \;.\; \) \(\) Determine a altura máxima h alcançada pela bola, depois da segunda colisão \( \;? \) \( \)\(\)
\(\)Na figura estão dois suportes prismáticos idênticos, com declive nulo no final, cada um com massa \( M= 4 \;kg.\; \) Ambos podem escorregar, sem atrito, na superfície horizontal polida da figura \( \;. \) \(\) Colocamos um corpo de massa \( m= 2.6 \;kg,\; \) a uma altura \( H= 51 \;cm,\; \) no suporte da esquerda \( \;. \) Esse corpo vai deslisar, sem atrito, atingindo a superfície horizontal com velocidade. Inicia então a subida do suporte da direita \( \;. \) \(\) Determine a altura máxima h que ele consegue atingir no suporte da direita \( \;? \) \( \)\(\)
\(\)Uma plataforma de massa \( M= 670 \;kg\; \) desloca-se no plano horizontal com velocidade constante \( v_0= 3.3 \;m/s. \) \(\) Num dado instante colocamos (sem velocidade) na sua extremidade um corpo rígido de massa \( m= 240 \;kg. \) \(\) Enquanto a plataforma avança, o corpo escorrega para trás com um coeficiente de atrito cinético \( \mu _K= 0.49 \;. \) \(\) Determine a distância \( \text{d} \;\; \) percorrida pelo corpo na plataforma até parar \( \;? \) \( \) \( \)\(\)
\(\)Uma bola de ténis é lançada contra o chão segundo um ângulo \( \alpha = 74 \;{}^{\circ} \) com a normal \( \;. \) \(\) Sabemos que entre a bola e o chão existe um coeficiente de atrito cinético \( \mu = 0.28 \;. \) \(\) Determine o ângulo \( \beta \;\; \) de reflexão da bola \( \;? \) \( \) \( \) \( \)\(\)