Momento linear e colisões

\(\)Na figura estão dois prismas idênticos, de inclinação igual a 45 graus e massa \( M= 8.2 \;kg\;. \) Encontram-se em repouso no plano horizontal, ao longo do qual se podem deslocar sem atrito \( \;. \) \(\) Uma bola de massa \( m= 410 \;g,\; \) largada de uma altura \( H= 50 \;cm,\; \) choca elasticamente com as superfícies dos dois prismas (ver Figura) e volta a subir verticalmente \( \;.\; \) \(\) Admita que a trajectória entre as duas colisões elásticas pode ser aproximada por uma linha recta horizontal \( \;.\; \) \(\) Determine a altura máxima h alcançada pela bola, depois da segunda colisão \( \;? \) \( \)\(\)

\(\)Na figura a carruagem de massa \( M= 81 \;kg,\; \) tem um túnel escavado, desde a superfície lateral até ao topo. A diferença de nível entre a entrada e a saída é \( H= 160. \;cm. \) \(\) Queremos lançar uma esfera, de massa \( m= 2 \;kg,\; \) que percorra todo o túnel ,saia pelo topo e suba acima, até uma altura \( h= 80. \;cm. \) \(\) Para o conseguir qual deverá ser a sua velocidade inicial mínima \( v_0= \;?\; \) \( \) \( \) \( \)\(\)

\(\)Os dois corpos da figura têm massas diferentes, \( M_A\neq M_B \;,\; \) e podem deslocar-se sem atrito ao longo da trajetória semicircular vertical indicada, de raio \( R= 58 \;cm. \) Larga-se o corpo A, que vai colidir elasticamente com B. \(\) IApós o choque, os dois corpos adquirem a mesma velocidade em módulo, embora de sentidos contrários \( \;. \) \(\) Qual é a altura máxima \( \text{h} \;,\; \) medida a partir do ponto mais baixo da trajetória, que o corpo B consegue atingir \( \;\;? \) \(\) Sugestão: Comece por calcular a relação entre as massas dos 2 corpos \( \;. \) \( \) \( \)\(\)

\(\)Dois rapazes decidiram tirar umas férias junto de um lago. Um deles decidiu pegar num barco a motor de massa \( M= 300 \;kg \) e ir dar um passeio pelo lago, enquanto o outro ficou no cais a pescar. \( \) O peso conjunto dos dois rapazes é de \( P= 1568. \;N,\; \) e ambos têm o mesmo peso. Qual a massa do sistema (rapaz + barco)? Assuma que a aceleração gravítica \( g = 9.8 \;m\;s^{-2}. \)\(\)

O rapaz partiu para o seu passeio de barco mas ao fim de 5 segundos o seu colega viu que se tinha esquecido da lancheira que havia preparado. Decide então fazer um lançamento horizontal para lhe passar a lancheira que tem uma massa de \( m_l= 2.5 \;kg. \) Sabendo que o o barco se desloca em todos os momentos a uma velocidade constante de \( v= 2.1 \;m\;s^{-1}, \) e que a altura do lançamento é de \( y_0= 1.5 \;m, \) qual a velocidade mínima para que a lancheira atinja o barco? Assuma que a lancheira sai da ponta da plataforma onde estava encostado o barco e que a aceleração gravítica é de \( g= 9.8 \;m\;s^{-2}. \)\(\)

No dia seguinte, a situação repetiu-se, mas o seu colega decidiu atirar-lhe a lancheira com uma massa \( m_l= 2. \;kg \) mesmo antes de o barco partir. A lancheira é atirada com uma velocidade \( v_{0x}= 3.8 \;m\;s^{-1}. \) Ao receber o pacote, o barco, que estava desatracado, começou a mover-se. Assustando-se, o rapaz dentro do barco decide atirar a lancheira de volta ao seu colega com a mesma velocidade \( v_{0x} \) em relação ao cais. \( \) Sabendo que o rapaz que está no barco têm uma massa de \( m= 80 \;kg, \) qual a velocidade do barco quando a lancheira chega ao cais? Menospreze o atrito da água sobre o movimento do barco e apresente o resultado com 3 casas decimais. \( \)\(\)

\(\)Dois amigos , AEsq e ADt, estão sentados em plataformas flutuantes como a que vimos numa aula teórica. Cada um está na sua plataforma e parado, apesar de estarem a flutuar a poucos milímetros do chão. Ambos pesam o mesmo. O amigo que está sentado do lado esquerdo na imagem, AEsq, tem uma mala na mão. \( \) A certa altura, o amigo que está do lado esquerdo (AEsq) atira a mala para o que está ao lado direito (ADt). Um outro amigo, (AO) repara que a mala segue uma trajetória retilínea, a velocidade constante, da esquerda para a direita e ao longo da linha que une os dois centros das plataformas. \( \) Considere que o peso da mala é inferior ao peso de cada um dos amigos. \( \) A caixa vai deslizar pelo chão, sem atrito, até chegar a ADt que a agarra. \( \) Analise qual deverá ser a velocidade de AEsq após atirar a mala no sentido de ADt e indique qual das seguintes afirmações é verdadeira. Considere que quando o AEsq atira a mala o momento linear do sistema plataforma+AEsq+mala se conserva. \( \)\(\)

\(\)No seguimento da situação descrita acima, o ADt recebe a caixa e agarra-a. A caixa chega a ADt com uma velocidade \( \vec{\mathbf{v_c}} = 20 \vec{\mathbf{e}} _x \;cm\;s^{-1}. \) Posteriormente ADt devolve a caixa para AEsq. O amigo que está a observar (AO) consegue verificar que a velocidade da caixa que ADt devolve a AEsq é igual em módulo mas de sentido contrário ao da velocidade que recebeu, ou seja \( \vec{\mathbf{v^*{}_c}} = -20 \vec{\mathbf{e}} _x \;cm\;s^{-1}. \) Calcule o módulo da velocidade de ADt depois de devolver a caixa a AEsq, \( v_{ADt} \;. \) Considere que tanto AEsq como ADt pesam \( P= 700 \;N,\; \) o peso da plataforma é \( P_{pl}= 110 \;N, \) a caixa pesa \( P_{caixa}= 60 \;N.\; \) Apresente o resultado em unidades \(cm\) \( s^{-1} \) e com duas casas decimais. \( \)\(\)

\(\)Considere as velocidades da caixa e de AEsq e ainda os pesos indicados anteriormente. Calcule quanto se deslocou o centro de massa do sistema plataforma+AEsq+caixa ao fim de \( t= 7 \;s, \) após AEsq ter atirado a caixa no sentido de ADt. Todas as massas são pontuais. ADt está suficentemente distante para que a caixa não o atinja durante este intervalo de tempo \(t\). \( \) Apresente o resultado em unidades \(cm\) e com duas casas decimais. \( \)\(\)

\(\)Considere agora que a caixa chega a ADt com uma velocidade \( \vec{\mathbf{v_c}} = 10 \vec{\mathbf{e}} _x \;cm\;s^{-1 }, \) ambos os amigos pesam \( P= 700 \;N, \) a plataforma pesa \( P_{pl}= 90 \;N,\; \) a caixa pesa \( P_{caixa}= 70 \;N.\; \) Calcule quanto se deslocou o centro de massa do sistema plataforma+ADt+caixa ao fim de \( t= 6 \;s \) após ADt ter atirado a caixa no sentido de AEsq com uma velocidade \( \vec{\mathbf{v^*{}_c}} = - \vec{\mathbf{v_c}} \) medida pelo amigo observador (AO). Apresente o resultado em unidades \(cm\) e com duas casas decimais. \( \)\(\)

\(\)Considere a situação apresentada na figura, em que um vagão, movendo-se num plano horizontal, é carregado com areia a partir de uma tremonha fixa ao solo. Considere que, após estar completamente carregado, o vagão, com velocidade \(\; v_1 \) , começa a despejar areia por uma fenda que se abriu no chão. A areia cai na vertical. Após perder toda a areia, a velocidade do vagão... \(\; \)\(\)

\(\)Considere o sistema da pergunta anterior constituído pela plataforma, canhão e bala. \( \) Calcule a velocidade da plataforma com o canhão logo após a bala ter sido disparada, \( V_f {\bf e}_x\;.\; \) Note que a velocidade é unicamente na direção do carril. Dê a resposta com duas casas decimais. \( \)\(\)

\(\)Considere o sistema descrito anteriormente e constituído pela plataforma, canhão e bala. Sabendo que a posição inicial de cada uma das componentes do sistema é no ponto (0m,0m) \( \) calcule a distância \( \) relativa à posição inicial a que se encontra o centro de massa do sistema no instante exato em que a bala toca no chão, \( D_{CM}. \)\(\)

\(\)Considere a situação apresentada na figura. Um vagão move-se ao longo de um plano horizontal, completamente descarregado, a uma velocidade inicial \(\; v_0 \) . A certo momento do seu percurso, começa a receber areia de uma tremonha fixa ao solo. Quando ficou completamente carregado, a velocidade do vagão... \(\; \)\(\)