Mecânica e Ondas

\(\)Um dono de um celeiro vê um atleta que, segurando uma vara na posição horizontal, corre com uma velocidade \( v = 0.65\;c \) em direção ao seu celeiro. O dono do celeiro sabe que o celeiro tem \( 15\;m \) de comprimento e tem ainda duas portas opostas - uma de entrada e uma de saída. No celeiro funciona um controlo remoto que permite abrir ou fechar as duas portas simultaneamente. Sabendo que para o atleta o comprimento da sua vara é de \( 25\;m, \) acha que no referencial do atleta este consegue passar a correr pelo celeiro sem tocar em nenhuma das portas que fecham? \( \)\(\)

\(\)Considere um corpo descrevendo um movimento circular e uniforme. Assinale todas as afirmações que sejam verdadeiras:\(\)

\(\)Um automóvel parte do repouso com aceleração \( a= 2 \;m\left/s^2\right. \) durante um tempo \( T_1 \;, \) depois continua em movimento uniforme durante algum tempo \( T_2 \;. \) Finalmente trava até à paragem completa, com uma desaceleração igual, em módulo, à inicial (ver figura). \( \) \(\)Sabemos que o tempo total de deslocamento é \( T= 49 \;s, \) e a velocidade média de todo o percurso é \( \bar{v}= 13 \;m/s. \) \(\)Alínea a: Determine a duração \(T_2\)do movimento uniforme. \( \) \(\) Alínea b: Calcule a distância total \( X_T \) percorrida durante o movimento. \( \)\(\)

\(\)De uma altura \( h= 3 \;m, \) atira-se uma bola para cima, com velocidade inicial \( v_o= 2 \;m\;s^{-1}. \) Considere como sentido positivo do movimento o sentido da velocidade inicial. \( \) A altura máxima é atingida quando a velocidade é: \( \)\(\)

\(\)Duas bolas, azul e branca, são largadas simultaneamente de um ponto a \( h= 2 \) metros do chão. A bola azul tem uma velocidade inicial nula, enquanto que a bola branca é atirada na horizontal com velocidade inicial \( v_o= 2 \;m\;s^{-1}. \) Compare o tempo de chegada ao chão da bola azul e da bola branca. Podemos afirmar que: \( \)\(\)

\(\)Uma bala de massa \( m_b \) é disparada com velocidade horizontal \( v_b \) contra um bloco \(A \) de massa \( M_A \) pousado na plataforma \(BC\) de um carrinho de massa \( M_c, \) estando ambos inicialmente em repouso. A bala fica posteriormente alojada no bloco \(A\) que se desloca sobre a plataforma. \(\)O coeficiente de atrito cinético entre o bloco \(A\) e a plataforma do carrinho é \( \mu _c\gt 0, \) o que causa a aceleração do carrinho e a desaceleração do bloco \(A\). \( \) \(\)Sabendo que o carrinho pode rolar livremente sem atrito, determine a expressão para velocidade final \( \vec{\mathbf{v}} _f \) do conjunto (carrinho+bloco com bala), assumindo que o bloco, visto da plataforma, acaba por parar ainda em cima desta. \( \)\(\)

\(\)Usando as notações do problema anterior, escolha a expressão correta para a aceleração \( \vec{\mathbf{a}} _c \) do carrinho enquanto o bloco \(A\) está em movimento relativamente à plataforma \(BC\) e se imobiliza antes de percorrer a distância \(D\) nesta. \( \) Considere que \( \vec{\mathbf{v}} _b=v_b\vec{\mathbf{e}} _x, \) com \( v_b\gt 0. \)\(\)

\(\)Considere agora que o bloco \(A\) tem peso \( P_A= 490. \;N \) e está a uma distância \( D= 5 \;m \) da extremidade \(B\) da plataforma, como indicado na figura anterior. \(\)Utilizando os valores \( \mu _c= 0.138 \) para o coeficiente de atrito entre o bloco e a plataforma, \( \vec{\mathbf{v}} _b= 545 \;\vec{\mathbf{e}} _x\left(m\;s^{-1}\right) \) para a velocidade da bala com massa \( m_b= 380. \;\;g, \) e \( M_c= 200 \;kg \) para a massa do carrinho, determine o tempo \( t_f \) que o carro leva até atingir a velocidade final \( \vec{\mathbf{v}} _f. \)\(\)

\(\) Uma nave com \( 30\;m \) de comprimento encontra-se estacionada numa base espacial. Quando parte para uma viagem e atinge a velocidade cruzeiro, o seu comprimento medido a partir da base é de \( 20\;m. \) Qual o comprimento da nave para os seus tripulantes? \( \) \(\)

\(\)Uma nave com \( 20\;m \) de comprimento encontra-se estacionada numa base espacial. Quando parte para uma viagem e atinge a velocidade cruzeiro, o seu comprimento medido a partir da base é de \( 10\;m. \) Qual o comprimento da nave para os seus tripulantes? \( \)\(\)

\(\)Duas lâmpadas são acesas simultaneamente para um observador que se encontra em repouso em relação a estas. O mesmo observador mede uma distância de \( 15\;m \) entre as lâmpadas. As mesmas lâmpadas não se acendem simultaneamente para um observador que se desloca num avião a \( 700\;m/s. \) Qual a distância espacial entre os dois acontecimentos (lâmpadas a acender) para o observador que se desloca dentro do avião? Apresente o resultado arredondado às unidades. \( \)\(\)

\(\)Considere uma pequena placa metálica onde existem duas fendas, muito estreitas, separadas por uma distância \( d \) e onde incide um feixe de luz monocromática de comprimento de onda \( \lambda =600\;nm \) (cor alaranjada). A uma distância \( x \) da placa existe um alvo onde pode ser observado o padrão de interferência provocado pelo feixe de luz ao atravessar as fendas. \( \) Na figura acima estão esquematicamente representados a placa com as fendas (visão lateral), o alvo onde se verifica o padrão de interferência e um gráfico com indicativo da intensidade luminosa em cada ponto do alvo. \( \) Sabendo que \( x =3\;m \) e \( d=6\;10^{-6}m, \) determine a distância entre o segundo e o primeiro máximos de intensidade luminosa que são observados no alvo, para além do máximo central. \( \) Apresente o resultado em centímetros e com duas casas decimais. \( \)\(\)

\(\)Um electrão e um positrão animados com uma velocidade de \( 0.92\;c \) colidem frontalmente. Assumindo que eles dão origem a dois fotões (aniquilação), qual a energia (em eV) de cada um dos fotões. Apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Um satélite de massa \(m \) descreve uma órbita circular à volta da Terra a uma altitude \( h_i\) sobre a superfície da Terra.Selecione, entre as expressões seguintes, qual a expressão geral para a energia potencial gravítica,\( E_p\), do satélite. Considere que a altitute da órbita, \( h_i\), pode ser da ordem de grandeza do raio da Terra, ou mesmo superior ao raio da Terra.Considere que \(G_N \) - é a constante de gravitação universal, \(g\) é o valor da aceleração gravítica à superfície da Terra, \(M_{Terra}\) é massa da Terra, \( m \) - massa do satélite\(\)

\(\)Uma escada de comprimento \( 2L= 6 \;m \) e massa \( m= 7 \;kg, \) está encostada a uma parede fazendo um ângulo \(\alpha \) com o chão. Assumindo que nem a parede nem o chão têm atrito nos pontos de contacto com a escada, \( \) \(\) Alínea a: determine o ângulo \(\alpha _o\) para o qual a escada não escorrega. \( \) \(\)Alínea b: assumindo que a escada começa a escorregar, determine o ângulo \( \alpha _1 \) em que a escada perde contacto com a parede. \( \)\(\)

\(\)Uma escada está encostada contra uma parede. Sabe-se que o centro de massa da escada encontra-se no meio desta. \( \) Considere que \( F_{px} \) é o módulo da força que a parede faz sobre a escada na direcção do eixo \( xx, \) e \( F_{cx} \) o módulo da força que o chão faz sobre a escada na mesma direcção. \( \) Assumindo que o sistema se encontra em equilíbrio estático qual das seguintes expressões é verdadeira? \( \)\(\)

\(\)Considere que a escada tem uma massa \( m= 10 \;kg, \) um comprimento \( l= 7 \;m \) e que a escada faz com o chão um ângulo \( \theta = 53 \;{}^{\circ}. \) Calcule o valor do módulo do torque devido ao peso da escada relativamente ao ponto em que a escada toca no chão. \( \) Considere o valor da aceleração gravítica \( g= 9.80 \;m\;s^{-2}. \)\(\)

\(\)Considere a máquina de Atwood representada na figura, constituída por uma roldana sem massa que roda sem atrito e duas massas \( m_1 \) e \( m_2 \) ligadas por um fio inextensível que não desliza sobre a roldana. \( \) Considere que a massa \( m_2 \) está constrangida a deslizar em linha recta ao longo de uma superfície inclinada que faz um ângulo \( \theta \) com a horizontal. Assumindo que não existe atrito em nenhuma parte do sistema, determine \( \) a expressão correta para a tensão \(T\) no fio que liga as massas. \( \)\(\)

\(\)Nas condições do problema anterior, qual deve ser o módulo da aceleração da massa \( m_2= 400 \;g, \) sabendo que \( m_1= 300 \;g \) e a inclinação da rampa é \( \theta = 60 \;{}^{\circ}. \) Considere a aceleração da gravidade \( g= 9.80 \;m\left/s^2.\right. \)\(\)

\(\)Imagine que queria ter um corpo em órbita a uma altura \( h= 246 \;km \) acima da superfície terrestre. Que velocidade teria que ter esse corpo assumindo que a trajectória é, em muito boa aproximação, circular? \( \) Considere que o raio médio da Terra é \( R_T= 6371 \;km. \)\(\)