Mecânica e Ondas

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=3\;Hz \) e uma amplitude \( A = 16\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=10\;m/s. \) A densidade linear da corda é \( \mu =0.04\;kg/m. \) Determine o número de onda \( (k) \) e apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=4\;Hz \) e uma amplitude \( A = 8\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.03\;kg/m. \) Determine o número de onda \( (k) \) e apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Duas ondas sinusoidais, de igual frequência, propagam-se numa corda em sentidos opostos dando origem à formação de ondas estacionárias. As ondas podem ser descritas pelas funções: \( y_{1 }(x,t)= 0.6 \sin (5. x-50. t) \;(m) \) e \( y_{2 }(x,t)= 0.6 \sin (50. t+5. x) \;(m).\; \) Verifica-se que há um nodo a meio da corda. Considere que a corda tem comprimento \( L\) e as extremidades fixas. \( \) Qual a amplitude de oscilação do ponto na corda que fica a uma distância \( x= 0.35 \;m \) da extremidade da corda que pode ser considerada como o início da corda. Dê a resposta em metros. \( \)\(\)

\(\)Qual o valor da velocidade de propagação das ondas na corda? \( \) Dê a resposta em metro por segundo \( \;(m/s).\; \)\(\)

\(\)A tensão aplicada na extremidade da corda é \( T= 25. \;N.\; \) Qual o valor da densidade linear da corda? \( \) Dê a resposta em \( \;kg/m.\; \)\(\)

\(\)Dois amigos , AEsq e ADt, estão sentados em plataformas flutuantes como a que vimos numa aula teórica. Cada um está na sua plataforma e parado, apesar de estarem a flutuar a poucos milímetros do chão. Ambos pesam o mesmo. O amigo que está sentado do lado esquerdo na imagem, AEsq, tem uma mala na mão. \( \) A certa altura, o amigo que está do lado esquerdo (AEsq) atira a mala para o que está ao lado direito (ADt). Um outro amigo, (AO) repara que a mala segue uma trajetória retilínea, a velocidade constante, da esquerda para a direita e ao longo da linha que une os dois centros das plataformas. \( \) Considere que o peso da mala é inferior ao peso de cada um dos amigos. \( \) A caixa vai deslizar pelo chão, sem atrito, até chegar a ADt que a agarra. \( \) Analise qual deverá ser a velocidade de AEsq após atirar a mala no sentido de ADt e indique qual das seguintes afirmações é verdadeira. Considere que quando o AEsq atira a mala o momento linear do sistema plataforma+AEsq+mala se conserva. \( \)\(\)

\(\)No seguimento da situação descrita acima, o ADt recebe a caixa e agarra-a. A caixa chega a ADt com uma velocidade \( \vec{\mathbf{v_c}} = 20 \vec{\mathbf{e}} _x \;cm\;s^{-1}. \) Posteriormente ADt devolve a caixa para AEsq. O amigo que está a observar (AO) consegue verificar que a velocidade da caixa que ADt devolve a AEsq é igual em módulo mas de sentido contrário ao da velocidade que recebeu, ou seja \( \vec{\mathbf{v^*{}_c}} = -20 \vec{\mathbf{e}} _x \;cm\;s^{-1}. \) Calcule o módulo da velocidade de ADt depois de devolver a caixa a AEsq, \( v_{ADt} \;. \) Considere que tanto AEsq como ADt pesam \( P= 700 \;N,\; \) o peso da plataforma é \( P_{pl}= 110 \;N, \) a caixa pesa \( P_{caixa}= 60 \;N.\; \) Apresente o resultado em unidades \(cm\) \( s^{-1} \) e com duas casas decimais. \( \)\(\)

\(\)Considere as velocidades da caixa e de AEsq e ainda os pesos indicados anteriormente. Calcule quanto se deslocou o centro de massa do sistema plataforma+AEsq+caixa ao fim de \( t= 7 \;s, \) após AEsq ter atirado a caixa no sentido de ADt. Todas as massas são pontuais. ADt está suficentemente distante para que a caixa não o atinja durante este intervalo de tempo \(t\). \( \) Apresente o resultado em unidades \(cm\) e com duas casas decimais. \( \)\(\)

\(\)Considere agora que a caixa chega a ADt com uma velocidade \( \vec{\mathbf{v_c}} = 10 \vec{\mathbf{e}} _x \;cm\;s^{-1 }, \) ambos os amigos pesam \( P= 700 \;N, \) a plataforma pesa \( P_{pl}= 90 \;N,\; \) a caixa pesa \( P_{caixa}= 70 \;N.\; \) Calcule quanto se deslocou o centro de massa do sistema plataforma+ADt+caixa ao fim de \( t= 6 \;s \) após ADt ter atirado a caixa no sentido de AEsq com uma velocidade \( \vec{\mathbf{v^*{}_c}} = - \vec{\mathbf{v_c}} \) medida pelo amigo observador (AO). Apresente o resultado em unidades \(cm\) e com duas casas decimais. \( \)\(\)

\(\)Um electrão e um positrão animados com uma velocidade de \( 0.96\;c \) colidem frontalmente. Pode obter-se como produto desta reação um par protão-anti-protão? \( \)\(\)

\(\)Considere que segura uma bola de massa \( m_1=2\;g \) e que a mesma está presa por um fio de comprimento \( l=13\;cm \) tal que o ângulo que o fio faz com a vertical é \( \theta =45\;{}^{\circ}. \) A bola é largada e vai cair (pela ação da força gravítica mas presa no fio) até embater numa parede (ver figura). A velocidade inicial da bola quando é largada é nula. \( \) Qual a altura \( h \) de que a bola é largada? Apresente o resultado em centímetros. Considere que quando a bola bate na parede a sua altura é zero. \( \)\(\)

Assuma que a bola foi largada de uma altura \( h=1\;cm. \) Determine a velocidade da bola \( v \) imediatamente antes de embater na parede. \( \) Considere a aceleração gravítica \( g=9.8\;m\;s^{-2} \)\(\)

Se a bola for largada inicialmente de uma altura \( h, \) considerando que a colisão contra a parede é uma colisão elástica, qual a expressão correta para a altura máxima que a bola conseguirá alcançar após essa colisão? \( \)\(\)

Qual a expressão para o período deste pêndulo? \( \)\(\)

Calcule o valor do módulo do torque total aplicado sobre a bola, relativamente ao ponto onde o fio está suspenso, no instante imediatamente antes da colisão com a parede. Nota: para o cálculo do torque total deve considerar todas as forças que atuam na massa suspensa. \( \)\(\)

Assuma agora que a bola é largada de uma altura \(h\) tal que o ângulo que o fio faz com a vertical é de \( \theta =32\;{}^{\circ}. \) Se o fio tiver um comprimento \( l=10\;cm \) e o corpo um peso de \( P=2\;N, \) qual o valor do módulo do torque que está aplicado à bola no instante em que ela é largada? Calcule o torque em relação ao ponto de suspensão do fio no teto. \( \) Apresente o resultado em unidades S.I. \( \)\(\)

\(\)A figura representa uma esfera de raio \( r, \) volume \( \text{V} \) e superfície \( S. \) No seu centro está desenhado um círculo \( \textit{C}, \) também de raio \( \text{r} \) e com uma circunferência de perímetro \( P. \) \(\)Nota: o número \( \pi =3,\! 14159\ldots \) é uma proporção que representa a razão entre o perímetro e o diâmetro de uma circunferência. \(\) Escolha só uma das opções. \(\) Qual é o perímetro da circunferência? \( \)\(\)

\(\)Um pistão cilíndrico contém um volume \( V_i \) de gás, inicialmente mantido à pressão \( P_i \) usando para isso uma força externa \(F_e=P_iS_p\), como indicado na figura. \( S_p\) é a área da seção transversal do pistão. Nesse estado, uma mola linear com constante elástica de \(k\) está ligada ao pistão, mas sem exercer nenhuma força sobre ele. \( \) Agora aquece-se o gás transferindo calor para o pistão,fazendo com que este comprima a mola até que o volume dentro do cilindro duplica. \( \) \(\)Alínea a: Se a área da seção transversal do pistão for \( S_p \) determine a pressão final dentro do cilindro, \( P_f \;. \) \(\)Alínea b: Qual é o trabalho total realizado pelo gás, \( W_g \) neste processo? \( \) \(\)Alínea c: Qual é o trabalho realizado contra a força da mola, \( W_k \;, \) entre o estado inicial e final do pistão? \( \) \(\)Alínea d: Qual é a razão entre as temperaturas final e inicial do gás, \( T_f/T_i \;? \) \(\)Para os cálculos use \( V_i= 0.03 \;m^3, \) \( P_i= 500 \;kPa, \) \( S_p= 0.24 \;m^2. \)\(\)

\(\)Duas massas \( m_1 \) e \( m_2 \) estão ligadas por um fio conforme indicado na figura acima. As massas encontram-se em cima de planos inclinados com ângulos \( \alpha =50\;{}^{\circ} \) e \( \beta =30\;{}^{\circ}. \) Considere o sistema de eixos apresentado na figura relativo ao corpo 2. Tomando \( T_2 \) como o módulo da tensão aplicada no corpo 2 e \( T_1 \) como o módulo da tensão aplicada no corpo 1 e \( a_2 \) a aceleração do corpo 2 no referencial indicado, qual a equação de Newton que caracteriza o movimento do corpo 2? \( \)\(\)

\(\)Sabe-se que o corpo 2 tem uma massa \( m_2= 7 \;kg \) e que este desce o plano com uma aceleração \( a_2= 2 \;m\;s^{-2}. \) Desprezando o momento de inércia da roldana, qual é a massa do corpo 1? Não há atrito entre as massas e as superfícies dos planos inclinados. \( \) Considere a aceleração gravítica \( g= 9.8 \;m\;s^{-2}. \)\(\)