\(\)Ainda no contexto do problema anterior, use o valor \( ℰ= 44 \;GeV \) para a energia da partícula , \( p= 32 \;GeV/c \) para o seu momento linear e \( d= 4 \;mm \) para a distância percorrida pela partícula invisível. Determine o tempo de vida \(\tau \) da partícula no seu referencial próprio. \(\) Dê o resultado em pico-segundos = \(10^{-12}s\) com 4 dígitos significativos. \( \)\(\)

\(\)No ponto de interacção IP5 no LHC, onde se encontra a experiência CMS, dois feixes de protões, de energia \(6.5\; TeV\) cada, colidem segundo um ângulo \( \theta = 400 \;\mu rad \) durante um período de tomada dados. Determine a magnitude do momento linear de cada um dos protões no referencial do centro de momento. \( \) \(\)Considere a massa do protão \( m_p= 938 \;MeV\left/c^2.\right. \) Dê o resultado com 5 algarismos significativos em unidades \( \;MeV/c. \)\(\)

\(\)Num copo com uma base quadrada de \( d= 8 \;cm \) de lado é colocado um cubo de gelo com volume \( V_{gelo}= 66 \;cm^3. \) No copo deitam-se mais \( V_{agua}= 2 \;dl \) de água e este fica completamente cheio mas sem entornar. A massa do copo é \( m= 45 \;g. \) \(\)Alínea a: Qual o peso do copo com o gelo? \( \) \(\)Alínea b: Qual a percentagem de gelo submerso? \( \) \(\)Alínea c: Qual o peso do copo com o gelo e a água? \( \) \(\)Alínea d: Quando o gelo derrete, calcule a quantidade de água que entorna. \( \) \(\)Alínea e: Qual o peso do copo com a água inicial mais a água correspondente ao gelo derretido? \( \)\(\)

\(\)Um automóvel parte do repouso com aceleração \( a= 2 \;m\left/s^2\right. \) durante um tempo \( T_1 \;, \) depois continua em movimento uniforme durante algum tempo \( T_2 \;. \) Finalmente trava até à paragem completa, com uma desaceleração igual, em módulo, à inicial (ver figura). \( \) \(\)Sabemos que o tempo total de deslocamento é \( T= 49 \;s, \) e a velocidade média de todo o percurso é \( \bar{v}= 13 \;m/s. \) \(\)Alínea a: Determine a duração \(T_2\)do movimento uniforme. \( \) \(\) Alínea b: Calcule a distância total \( X_T \) percorrida durante o movimento. \( \)\(\)

\(\)Uma escada de comprimento \( 2L= 6 \;m \) e massa \( m= 7 \;kg, \) está encostada a uma parede fazendo um ângulo \(\alpha \) com o chão. Assumindo que nem a parede nem o chão têm atrito nos pontos de contacto com a escada, \( \) \(\) Alínea a: determine o ângulo \(\alpha _o\) para o qual a escada não escorrega. \( \) \(\)Alínea b: assumindo que a escada começa a escorregar, determine o ângulo \( \alpha _1 \) em que a escada perde contacto com a parede. \( \)\(\)

\(\)Considere o sistema indicado na figura. O momento de inércia da roldana, de raio \( R= 88 \;cm, \) em relação ao eixo de rotação da mesma é \( \textit{I}_z= 16 \;kg\;m^2. \) A corda em contacto com a roldana não desliza e a sua massa é desprezável. \( \) Calcule o valor absoluto da aceleração \(a\) das massas \( m_1= 11 \;kg \) e \( m_2= 16 \;kg. \)\(\)

\(\)Determine a expressão para a velocidade angular da roldana em função do tempo, \( \vec{\mathbf{\omega }} = \omega (t)\vec{\mathbf{e}} _z, \) assumindo que a roldana está inicialmente em repouso. \( \)\(\)

\(\)Usando as condições gerais do problema anterior, indique a expressão correta para a razão entre as tensões \( T_1 \) e \( T_2 \) na corda de cada lado da roldana. \( \)\(\)

\(\)Na figura um cubo de gelo escorrega sobre uma esfera de aço fixa, de raio \( R= 43 \;cm,\; \) a partir do topo, sem velocidade inicial. Despreze qualquer atrito \( \;.\; \) \(\) Determine a distância \( \text{d} \) horizontal entre o ponto de largada e o ponto de contacto do cubo de gelo com o solo, depois de perder o contacto com a esfera \( \;?\; \) \(\) SUGESTÃO: Comece por calcular o ângulo \( \theta \) em que o cubo perde o contacto com a esfera \( \;.\; \)\(\)

\(\)Um cubo de gelo escorrega sobre uma esfera de aço a partir do topo e sem velocidade inicial, como indicado na figura. A esfera tem raio \( R= 28. \;cm,\; \) a massa do cubo de gelo é \( m= 17. \;g. \) Despreze qualquer atrito entre o gelo e a esfera \( \;.\; \) \(\) Calcule o ângulo \( \theta \) em que o cubo de gelo perde o contacto com a esfera \( \;.\; \) \( \)\(\)

Tendo em conta a figura da questão anterior, considere que a barra, de espessura desprezável, tem comprimento \( L= 4 \;m, \) massa \( M= 10 \;kg, \) e está em equilíbrio apoiada com a inclinação \( \alpha \) numa fenda de espessura \( d= 49 \;cm. \) \(\)Determine o valor em graus para o ângulo \( \alpha \) nestas condições. \( \)\(\)

\(\)Tendo em conta que a barra se encontra em equiíbrio para um dado ângulo \( \alpha \) selecione quais das seguintes respostas estão corretas. \( \)\(\)

\(\)Uma haste homogénea de massa \( m \) , espessura desprezável e comprimento \( L \) apoia-se contra uma parede no ponto \(A\) e contra o vértice dum canto de outra parede no ponto \(B\). O seu centro de massa é em \( cm. \) \(\)Não havendo qualquer atrito entre a barra e as paredes nos pontos de contacto, escolha a resposta correta para a disposição das forças que atuam sobre a barra. \( \)\(\)

\(\)Uma roda de raio \(R\) gira, sem deslizar, ao longo de uma estrada horizontal. O ponto \(C\) no eixo de rotação desloca-se com uma velocidade \(\vec{\mathbf{v}} _C\) em relação à estrada. \( \) \(\)O ponto \(B\)é o ponto de contacto entre a roda e a estrada .\(\) O ponto \(A\) é radialmente oposto ao ponto \(B\) estando a uma altura \( h=2R \) da estrada. \( \) As velocidades dos pontos \( A,B, C \) em relação à estrada são respetivamente \( \vec{\mathbf{v}} _A,\vec{\mathbf{v}} _B,\vec{\mathbf{v}} _C, \) e em relação ao eixo de rotação \(C\) são \( \vec{\mathbf{v}} _A^{\prime },\vec{\mathbf{v}} _B^{\prime },\vec{\mathbf{v}} _C^{\prime }. \) Neste sistema \( \vec{\mathbf{v}} _C^{\prime }=0. \) Os módulos das velocidades são indicados por \( v_A, v_B,\ldots , v_C^{\prime }. \) \(\)Alínea a: Analise o movimento da roda em relação ao eixo de rotação \(C\) e identifique as expressões verdadeiras. \( \) \(\)Alínea b: Qual a relação entre as velocidades dos vários pontos e a velocidade angular \(\omega \) da roda ? \( \) \(\)Alínea c: Qual das seguintes figuras é uma representação correta das velocidades? \( \)\(\)

\(\)Um anel rola sem deslizar por um plano inclinado como representado na figura. O plano inclinado tem um comprimento \( L= 180 \;cm \) e faz um ângulo \( \beta = 35 \;{}^{\circ}. \) A massa do anel é \( M= 200 \;g \) e o raio do anel é \( R= 25 \;cm. \) \(\) O anel é largado com velocidade incial nula de um ponto \(A\) na extremidade superior do plano inclinado. \( \) \(\)Alínea a: Qual é a altura do ponto \(A\)? \( \) \(\)Alínea b: Qual é a aceleração linear \(a\) do anel ao longo do plano inclinado? \( \) \(\)Alínea c: Qual é o momento de inércia do anel em relação a um eixo de rotação que passa no seu centro e é perpendicular ao plano do anel? \( \) \(\)Alínea d: Quanto tempo demora o anel a chegar ao fim do plano inclinado? \( \)\(\)

\(\)Um anel e um disco rodam sem deslizar ao longo de um plano inclinado. As massas do disco e do anel são iguais, e os seus raios também são iguais. \( \) \(\)Pretende-se saber qual chega primeiro ao fim do plano inclinado. \( \) \(\)Escolha a resposta certa entre as seguintes alternativas: \( \)\(\)

\(\)Considere que a escada tem uma massa \( m= 10 \;kg, \) um comprimento \( l= 7 \;m \) e que a escada faz com o chão um ângulo \( \theta = 53 \;{}^{\circ}. \) Calcule o valor do módulo do torque devido ao peso da escada relativamente ao ponto em que a escada toca no chão. \( \) Considere o valor da aceleração gravítica \( g= 9.80 \;m\;s^{-2}. \)\(\)

\(\)Uma escada está encostada contra uma parede. Sabe-se que o centro de massa da escada encontra-se no meio desta. \( \) Considere que \( F_{px} \) é o módulo da força que a parede faz sobre a escada na direcção do eixo \( xx, \) e \( F_{cx} \) o módulo da força que o chão faz sobre a escada na mesma direcção. \( \) Assumindo que o sistema se encontra em equilíbrio estático qual das seguintes expressões é verdadeira? \( \)\(\)

\(\)Dois amigos , AEsq e ADt, estão sentados em plataformas flutuantes como a que vimos numa aula teórica. Cada um está na sua plataforma e parado, apesar de estarem a flutuar a poucos milímetros do chão. Ambos pesam o mesmo. O amigo que está sentado do lado esquerdo na imagem, AEsq, tem uma mala na mão. \( \) A certa altura, o amigo que está do lado esquerdo (AEsq) atira a mala para o que está ao lado direito (ADt). Um outro amigo, (AO) repara que a mala segue uma trajetória retilínea, a velocidade constante, da esquerda para a direita e ao longo da linha que une os dois centros das plataformas. \( \) Considere que o peso da mala é inferior ao peso de cada um dos amigos. \( \) A caixa vai deslizar pelo chão, sem atrito, até chegar a ADt que a agarra. \( \) Analise qual deverá ser a velocidade de AEsq após atirar a mala no sentido de ADt e indique qual das seguintes afirmações é verdadeira. Considere que quando o AEsq atira a mala o momento linear do sistema plataforma+AEsq+mala se conserva. \( \)\(\)

\(\)Duas lâmpadas são acesas simultaneamente para um observador que se encontra em repouso em relação a estas. O mesmo observador mede uma distância de \( 25\;m \) entre elas. As duas lâmpadas não se acendem simultaneamente para um observador que se desloca num avião a \( 400\;m/s. \) Qual o intervalo de tempo decorrido entre o acender das lâmpadas para este observador? Apresente o resultado com três algarismos significativos. \( \)\(\)