Apêndice - Vetores

\(\)Considere um ponto que se desloca num movimento circular uniforme \( \vec{\mathbf{r}} (t)= 2 \vec{\mathbf{e}} _x \cos (0.60 t+1.11)+2 \vec{\mathbf{e}} _y \sin (0.60 t+1.11) \;. \) Calcule a sua aceleração quando chega ao ponto \( \vec{\mathbf{r}} _1 \) passados \( t= 2 \;s, \) sabendo que parte do ponto inicial \( \vec{\mathbf{r}} _o. \) Escreva o resultado em coordenadas do referencial \( \left\{\vec{\mathbf{e}} _r,\vec{\mathbf{e}} _{\theta }\right\} \)\(\)

\(\)Considere os vectores \( \vec{\mathbf{a}} = \vec{\mathbf{e}} _x-4 \vec{\mathbf{e}} _y \) e \( \vec{\mathbf{b}} = 5 \vec{\mathbf{e}} _x+3 \vec{\mathbf{e}} _y \) Calcule o produto interno \(c =\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \) e, a partir desse resultado, calcule o ângulo \(\theta \) entre os vectores \(\vec{\mathbf{a}} \) e \(\vec{\mathbf{b}} \). Escolha a resposta correta que corresponde ao valor para o ângulo \(\theta \) ou em graus ou em radianos. \( \)\(\)

\(\)A força exercida sobre uma carga \( q = \frac{1}{2} \;C \) que se desloca com velocidade \( \vec{\mathbf{v}} = 2 \left(\vec{\mathbf{e}} _x-\vec{\mathbf{e}} _y-\vec{\mathbf{e}} _z\right) \;m/s\; \) num campo magnético \( \vec{\mathbf{B}} = -3 \vec{\mathbf{e}} _z \;T\;(Tesla) \) designa-se Força de Lorentz \( \vec{\mathbf{F}} =q \vec{\mathbf{v}} \times \vec{\mathbf{B}} . \) \(\)Selecione qual das seguintes opções corresponde à resposta correta para \( \vec{\mathbf{F}} \;. \)\(\)

\(\)Considere um ponto que se desloca num movimento circular acelerado \( \vec{\mathbf{r}} (t)= 2 \vec{\mathbf{e}} _x \cos \left(0.24-0.17 t^2\right)+2 \vec{\mathbf{e}} _y \sin \left(0.24-0.17 t^2\right) \;. \) Calcule a sua aceleração radial quando chega ao ponto \( \vec{\mathbf{r}} _1 \) passados \( t= 2 \;s, \) sabendo que parte do ponto inicial \( \vec{\mathbf{r}} _o. \) Escreva o resultado em coordenadas do referencial \( \left\{\vec{\mathbf{e}} _r,\vec{\mathbf{e}} _{\theta }\right\} \)\(\)

\(\)Considere um ponto que se desloca num movimento circular acelerado \( \vec{\mathbf{r}} (t)= 2 \vec{\mathbf{e}} _x \cos \left(0.11 t^2+2.88\right)+2 \vec{\mathbf{e}} _y \sin \left(0.11 t^2+2.88\right) \;. \) Calcule a sua aceleração radial quando chega ao ponto \( \vec{\mathbf{r}} _1 \) passados \( t= 2 \;s, \) sabendo que parte do ponto inicial \( \vec{\mathbf{r}} _o. \) Escreva o resultado em coordenadas do referencial \( \left\{\vec{\mathbf{e}} _r,\vec{\mathbf{e}} _{\theta }\right\} \;. \)\(\)

\(\)Após levantar voo, um avião desloca-se 20 km para norte, 10 km para cima e 20 km para oeste. Qual é o seu deslocamento total, desde que levantou voo? \( \; \)\(\)

\(\)Considere a figura em que se representa o movimento a duas dimensões de um projéctil. O vector da velocidade inicial faz um ângulo \( \theta \) com a horizontal, tal como se ilustra na figura. \( \) Recorde-se dos exercícios de revisão que resolveu acerca de funções trigonométricas, e seleccione a opção correcta em relação à componente da velocidade inicial em x em função do ângulo \( \theta \) : \( \)\(\)

\(\)Considere um ponto que se desloca num movimento circular uniforme \( \vec{\mathbf{r}} (t)= 2 \vec{\mathbf{e}} _x \cos (0.60 t+1.81)+2 \vec{\mathbf{e}} _y \sin (0.60 t+1.81) \) Calcule a sua velocidade quando chega ao ponto \( \vec{\mathbf{r}} _1 \) passados \( t= 2 \;s, \) sabendo que parte do ponto inicial \( \vec{\mathbf{r}} _o. \) Escreva o resultado em coordenadas do referencial \( \left\{\vec{\mathbf{e}} _r,\vec{\mathbf{e}} _{\theta }\right\} \)\(\)