Mecânica e Ondas
\(\)Determine a massa do Sol a partir do movimento da Terra em torno do Sol. Considere que a órbita da Terra é circular, o que é muito aproximadamente verdade. \( \) \(\)Use \( 1 u.a.= 1.496\times 10^8 \;km \) para a distância Terra-Sol, e \( G= 6.674\times 10^{-11} \;\left.m^3\right/kg/s^2 \) para a constante gravitacional universal. \( \) \(\)Dê a sua resposta com 4 dígitos significativos e em notação científica \( x.yyy En \) (obrigatório) que representa \( x.yyy\times 10^n. \)\(\)
\(\)Um protão no LHC, o maior acelerador de partículas do mundo, desloca-se a uma velocidade \( v_p= 0.9999999 \;c. \) Se um protão com essa velocidade atravessasse a nossa galáxia ao longo do seu diâmetro, levaria \( T= 100414.35 \;anos \) no referencial da galáxia. Qual seria o diâmetro da galáxia visto do referencial próprio do protão? \( \) Dê o resultado com 4 dígitos significativos. \( \)\(\)
\(\)Uma partícula desloca-se num acelerador com uma velocidade \( v_p=\beta _p \;c \) quando se desintegra num par muão anti-muão. Um dos muões desloca-se para a frente ao longo da trajetória inicial,com velocidade \( V_+^{\prime } \;km/s \) no referencial próprio da partícula original. Qual é a velocidade do outro muão \( V_- \) quando visto no referencial do acelerador? \( \)\(\)
\(\)O \( J/\psi \) é uma partícula elementar que se pode desintegrar num par muão \( \mu ^- \) e anti-muão \( \mu ^+. \) No laboratório observa-se um \(J/\psi \) através desse decaimento e verifica-se que ele se movia com uma velocidade \( V. \) Devido à conservação do momento linear, no referencial próprio do \(J/\psi \) o muão e o anti-muão são emitidos em direcções diametralmente opostas com uma velocidade de módulo \( v_{\mu }^{\prime }. \) Sabendo que o muão faz nesse referencial um ângulo \( \theta ' \) com a direcção de deslocamento original do \(J/\psi \) , \( \) escolha a expressão correta para este ângulo quando é medido no laboratório. \( \)\(\)
\(\)Numa experiência de acelerador é observada numa colisão a presença de uma partícula instável cuja trajectória (invisível) tem um comprimento \(d\). \( \) Após a reconstrução das trajectórias de todas as outras partículas (visíveis) envolvidas verificou-se que essa partícula tinha uma energia \(ℰ\) \( \) e um momento linear de magnitude \(p\) . \( \) Escolha a expressão correta para a velocidade \(v\) da partícula. \( \)\(\)
\(\)Usando os dados do problema anterior, quais das expressões seguintes exprime corretamente a massa da partícula invisível? \( \) \(\)Note que mais do que uma pode estar certa e cada escolha errada será penalizada. \( \)\(\)
\(\)Ainda no contexto do problema anterior, use o valor \( ℰ= 44 \;GeV \) para a energia da partícula , \( p= 32 \;GeV/c \) para o seu momento linear e \( d= 4 \;mm \) para a distância percorrida pela partícula invisível. Determine o tempo de vida \(\tau \) da partícula no seu referencial próprio. \(\) Dê o resultado em pico-segundos = \(10^{-12}s\) com 4 dígitos significativos. \( \)\(\)
\(\)No ponto de interacção IP5 no LHC, onde se encontra a experiência CMS, dois feixes de protões, de energia \(6.5\; TeV\) cada, colidem segundo um ângulo \( \theta = 400 \;\mu rad \) durante um período de tomada dados. Determine a magnitude do momento linear de cada um dos protões no referencial do centro de momento. \( \) \(\)Considere a massa do protão \( m_p= 938 \;MeV\left/c^2.\right. \) Dê o resultado com 5 algarismos significativos em unidades \( \;MeV/c. \)\(\)
\(\)Explique porque é que \( \int _0^t\tau ^2{d} \tau = \frac{t^3}{3} \;. \)\(\)
\(\)Um feixe de muões, \( \mu \) , em raios cósmicos, move-se à velocidade de \( v=0.993\;c. \) Qual é a percentagem de muões que sobrevive após um percurso de \( 1910\;m? \) Assuma um tempo de meia-vida de \( T_{1/2}=1.53\;\times 10^{-6}s \) no referencial próprio. Apresente o resultado com 4 algarismos significativos. \( \)\(\)
\(\)Neste problema pretende-se analisar como é que uma fibra ótica consegue transportar luz. Uma fibra ótica pode ser idealizada como um cilindro de material com índice de refracção \( n_f=1.5 \) coberto com uma capa, também cilíndrica, com índice de refração \( n_c\;. \) Considere um raio de luz incidente na parte central da fibra ótica a partir do ar. O ar tem índice de refração \( n_a=1\;, \) e o ângulo de incidência \( \theta _A=20\;{}^{\circ} \) é medido relativamente à normal à face plana do cilindro (ver figura). \( \) Qual o ângulo de refração \( \theta _B= \) com que o raio de luz entra no material, ângulo medido relativamente à normal à superfície de separação ar/cilindro? Apresente o resultado em graus. Nota: a magnitude dos ângulos apresentados é arbitrária. \( \)\(\)
Assuma agora que a luz atinge a superfície da fronteira entre \( n_f \) e \( n_c \) fazendo um ângulo de \(50{}^{\circ}\) com a normal a esta superfície. \( \) Por forma a que haja reflexão total na interface cilindro central-capa qual das opções deverá acontecer? \( \)\(\)
Nas condições da alínea anterior, e assumindo que o ângulo de incidência é de \( \theta _C=63\;{}^{\circ} \) calcule o valor limite de \( n_c \) para que ocorra reflexão total no interface cilindro-capa. \( \)\(\)
Se a luz entrar no material do cilindro central com um ângulo \( \theta _B=27\;{}^{\circ}, \) calcule qual o ângulo \( \theta _C \) com que a luz incide na fronteira entre o material com índice de refração \( n_f \) e o material da cobertura com índice de refração \( n_c\;. \) Considere o ângulo \(\theta _C \) medido em relação à normal ao plano de separação entre esses dois meios. \( \)\(\)
\(\)A força exercida sobre uma carga \( q = \frac{1}{2} \;C \) que se desloca com velocidade \( \vec{\mathbf{v}} = 2 \left(\vec{\mathbf{e}} _x-\vec{\mathbf{e}} _y-\vec{\mathbf{e}} _z\right) \;m/s\; \) num campo magnético \( \vec{\mathbf{B}} = -3 \vec{\mathbf{e}} _z \;T\;(Tesla) \) designa-se Força de Lorentz \( \vec{\mathbf{F}} =q \vec{\mathbf{v}} \times \vec{\mathbf{B}} . \) \(\)Selecione qual das seguintes opções corresponde à resposta correta para \( \vec{\mathbf{F}} \;. \)\(\)
\(\)Compare o valor da força gravítica que atua num astronauta à superfície da Terra com o valor da força gravítica sentida por esse mesmo astronauta quando se encontra numa nave numa órbita circular com \( 7100\;km \) de raio em torno da Terra. Considere que o astronauta tem massa \( 80\;kg \) e que o raio médio da Terra é de \( 6371\;km. \) Apresente o resultado com dois algarismos significativos. \( \)\(\)
\(\) Compare o valor da força gravítica que actua num astronauta à superfície da Terra com o valor da força gravítica que actua nesse astronauta quando se encontra numa nave numa órbita circular com \( 7000\;km \) de raio em torno da Terra. Considere que o astronauta tem massa \( 70\;kg \) e que o raio da Terra é de \( 6371\;km. \) \(\)
\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=7\;Hz \) e uma amplitude \( A = 10\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.06\;kg/m. \) Determine a frequência angular ( \( \omega \) ) e apresente o resultado com 3 algarismos significativos. \( \)\(\)
\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=8\;Hz \) e uma amplitude \( A = 12\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.07\;kg/m. \) Determine a frequência angular ( \( \omega \) ) e apresente o resultado com 3 algarismos significativos. \( \)\(\)
\(\)Um automóvel parte do repouso com aceleração \( a= 8 \;m\left/s^2\right.,\; \) continua em movimento uniforme durante algum tempo. Depois trava até à paragem completa, com uma desaceleração igual, em módulo, à inicial (ver figura). \(\) Sabemos que o tempo total de deslocamento é \( T= 31 \;s\; \) e a velocidade média de todo o percurso é \( \lt v\gt = 13 \;m/s. \) \(\) Determine a duração \( T_2 \;\; \) do movimento uniforme \( \;? \)\(\)