\(\)Um pistão cilíndrico contém um volume \( V_i \) de gás, inicialmente mantido à pressão \( P_i \) usando para isso uma força externa \(F_e=P_iS_p\), como indicado na figura. \( S_p\) é a área da seção transversal do pistão. Nesse estado, uma mola linear com constante elástica de \(k\) está ligada ao pistão, mas sem exercer nenhuma força sobre ele. \( \) Agora aquece-se o gás transferindo calor para o pistão,fazendo com que este comprima a mola até que o volume dentro do cilindro duplica. \( \) \(\)Alínea a: Se a área da seção transversal do pistão for \( S_p \) determine a pressão final dentro do cilindro, \( P_f \;. \) \(\)Alínea b: Qual é o trabalho total realizado pelo gás, \( W_g \) neste processo? \( \) \(\)Alínea c: Qual é o trabalho realizado contra a força da mola, \( W_k \;, \) entre o estado inicial e final do pistão? \( \) \(\)Alínea d: Qual é a razão entre as temperaturas final e inicial do gás, \( T_f/T_i \;? \) \(\)Para os cálculos use \( V_i= 0.03 \;m^3, \) \( P_i= 500 \;kPa, \) \( S_p= 0.24 \;m^2. \)\(\)

\(\)Duas massas \( m_1 \) e \( m_2 \) estão ligadas por um fio conforme indicado na figura acima. As massas encontram-se em cima de planos inclinados com ângulos \( \alpha =50\;{}^{\circ} \) e \( \beta =30\;{}^{\circ}. \) Considere o sistema de eixos apresentado na figura relativo ao corpo 2. Tomando \( T_2 \) como o módulo da tensão aplicada no corpo 2 e \( T_1 \) como o módulo da tensão aplicada no corpo 1 e \( a_2 \) a aceleração do corpo 2 no referencial indicado, qual a equação de Newton que caracteriza o movimento do corpo 2? \( \)\(\)

\(\)Sabe-se que o corpo 2 tem uma massa \( m_2= 7 \;kg \) e que este desce o plano com uma aceleração \( a_2= 2 \;m\;s^{-2}. \) Desprezando o momento de inércia da roldana, qual é a massa do corpo 1? Não há atrito entre as massas e as superfícies dos planos inclinados. \( \) Considere a aceleração gravítica \( g= 9.8 \;m\;s^{-2}. \)\(\)

Considere agora que o momento de inércia da roldana não é desprezável e influencia o movimento das massas. Tomando \(m_1=1 \; kg,\) \(m_2=4 \; kg\) e \(a_2=2 \; m\;s^{-2},\) calcule o módulo da tensão aplicada sobre o corpo 1. \( \; \)\(\)

Considere o módulo das tensões aplicadas na massas. Nas condições da alínea anterior qual das seguintes expressões é verdadeira? \( \)\(\)

Considere que a roldana tem um raio \( r=10\;cm, \) e uma distribuição de massa desconhecida. Sabendo que \( m_1=1\;kg, \) \( m_2=13\;kg \) e \( a_2=2\;m\;s^{-2}, \) e assumindo que a diferença entre as tensões \( T_2 \) e \( T_1 \) é de \( \Delta T=T_2-T_1=7\;N, \) calcule o momento de inércia da roldana. \( \)\(\)

\(\)Uma plataforma circular em forma de disco gira no plano horizontal sobre uma superfície sem atrito, como representado na figura da pergunta anterior. A plataforma tem massa \( M= 200 \;kg \) e um raio \( R= 4 \;m.\; \) Um estudante, com uma massa \( m= 70 \;kg\; \) e inicialmente situado na extremidade da plataforma, caminha lentamente desde a extremidade e no sentido do centro da plataforma. Quando o estudante está na extremidade da plataforma a velocidade angular do sistema (estudante + plataforma) é \( \omega _i= 2 \;rad/s.\; \) \(\)Considere que quando se encontra num ponto situado a uma distância \( r_f= 0.4 \;m \) do centro de rotação decide parar (relativamente a plataforma). Calcule \( \Delta E_c=E_{c,f}- E_{c,i} \;, \) isto é, calcule a diferença entre a energia cinética do sistema (estudante+plataforma) quando o estudante parou sobre a plataforma , \(E_{c,f} \), e a energia cinética no início em que o estudante começou a andar sobre a plataforma \(E_{c,i} \). \( \)\(\)

\(\)Uma plataforma circular em forma de disco gira no plano horizontal. A plataforma tem massa \( \text{M} \) e um raio \( \text{R} \;. \) Um estudante, com uma massa \( \text{m} \) e inicialmente situado na extremidade da plataforma, caminha lentamente desde a extremidade e no sentido do centro da plataforma. Quando o estudante está na extremidade da plataforma a velocidade angular do sistema (estudante + plataforma) é \( \omega _i \;. \) Considere que quando se encontra num ponto situado a uma distância \( r_f \) do centro de rotação o estudante decide parar (relativamente à plataforma). Há atrito entre o estudante e a plataforma. Selecione, das afirmações seguintes, qual é a verdadeira no que diz respeito à relação entre a velocidade angular inicial e a velocidade angular final do estudante, \( \omega _f \;,\; \) quando este parou na plataforma. \( \)\(\)

\(\)Uma haste homogénea de massa \( m \) , espessura desprezável e comprimento \( L \) apoia-se contra uma parede no ponto \(A\) e contra o vértice dum canto de outra parede no ponto \(B\). O seu centro de massa é em \( cm. \) \(\)Não havendo qualquer atrito entre a barra e as paredes nos pontos de contacto, escolha a resposta correta para a disposição das forças que atuam sobre a barra. \( \)\(\)

\(\)Tendo em conta que a barra se encontra em equiíbrio para um dado ângulo \( \alpha \) selecione quais das seguintes respostas estão corretas. \( \)\(\)

Tendo em conta a figura da questão anterior, considere que a barra, de espessura desprezável, tem comprimento \( L= 4 \;m, \) massa \( M= 10 \;kg, \) e está em equilíbrio apoiada com a inclinação \( \alpha \) numa fenda de espessura \( d= 49 \;cm. \) \(\)Determine o valor em graus para o ângulo \( \alpha \) nestas condições. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=5\;Hz \) e uma amplitude \( A = 12\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.05\;kg/m. \) Determine a potência necessária em \( \;W \) para manter a corda a vibrar. Apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Uma corda é agitada numa extremidade \( x=0 \) com um frequência \( f=5\;Hz \) e uma amplitude \( A = 12\;cm. \) A onda que se forma propaga-se com uma velocidade \( v=20\;m/s. \) A densidade linear da corda é \( \mu =0.05\;kg/m. \) Determine a potência necessária em \( \;W \) para manter a corda a vibrar. Apresente o resultado com 3 algarismos significativos. \( \)\(\)

\(\)Um condutor filiforme de comprimento \( L = 87 \;m \) e secção reta \( A = 46 \;cm^2 \) tem condutividade \( \sigma _c = 4 \;\;\times 10^6\;Sm^{-1}. \) As extremidades do condutor são mantidas a uma tensão \( V = 927 \;V \) Determine a potência \(P_d\) dissipada pelo condutor nestas condições. \( \)\(\)

\(\)A vara da figura tem comprimento \( L = 243 \;cm\; \) e pesa \( 4500 \;N\;. \) Está ligada à parede vertical por um cabo de aço. \( \) Qual a tensão aproximada que o cabo suporta \( \;?\; \) \( \)\(\)

\(\)A figura representa uma corda com secção uniforme. A sua densidade é \(\rho =1 \; kg\;m^{-3}\) e a secção é \(A=0.1 \; m^2.\) Qual é a densidade linear de massa \(\mu \) = massa / comprimento ? \( \; \)\(\)

\(\)Após levantar voo, um avião desloca-se 20 km para norte, 10 km para cima e 20 km para oeste. Qual é o seu deslocamento total, desde que levantou voo? \( \; \)\(\)

\(\)Qual é , aproximadamente, a ordem de grandeza da sua idade, em segundos ? \(\; \)\(\)

\(\)A massa do Sol é, aproximadamente , \(\; 1.99\;\times 10^{30}\;kg \) e a de um átomo de hidrogénio é \(\; 1.67\;\times 10^{-27}\;kg. \) Se o Sol fosse composto só por hidrogénio, quantos átomos teria? \(\; \)\(\)

\(\)Um comboio move-se ao longo de uma linha reta. \( \) O gráfico mostra a posição em função do tempo. \( \) O que acontece à velocidade do comboio? \( \)\(\)