\(\)O atleta representado na figura segura a vara na horizontal \( \) colocando a mão esquerda numa extremidade da vara e a mão direita a uma distância \( d_C = 0.7 \;m \) da mão esquerda. \( \) A vara tem de comprimento \( L= 3.5 \;m \) e pesa \( P= 29.4 \;N.\; \) Considere que a vara tem densidade uniforme. \( \) Calcule o módulo da força \( F_C \;. \) Dê a resposta com duas casas decimais. \( \)\(\)
\(\)A figura representa uma esfera de raio \( r, \) volume \( \text{V} \) e superfície \( S. \) No seu centro está desenhado um círculo \( \textit{C}, \) também de raio \( \text{r} \) e com uma circunferência de perímetro \( P. \) Nota: o número \( \pi =3,\! 14159\ldots \) é uma proporção que representa a razão entre o perímetro e o diâmetro de uma circunferência. \(\) Escolha só uma das opções. \(\) \( \) Qual é a área da superfície da esfera? \( \)\(\)
\(\)A figura representa uma esfera de raio \( r, \) volume \( \text{V} \) e superfície \( S. \) No seu centro está desenhado um círculo \( \textit{C}, \) também de raio \( \text{r} \) e com uma circunferência de perímetro \( P. \) Nota: o número \( \pi =3,\! 14159\ldots \) é uma proporção que representa a razão entre o perímetro e o diâmetro de uma circunferência. \(\) Escolha só uma das opções. \(\) \( \) Qual a área do círculo circunscrito por essa circunferência? \( \)\(\)
\(\)Uma anilha condutora de altura \( h = 80 \;mm \) é composta por dois condutores coaxiais de condutividades diferentes.Entre \( R_1 = 4 \;cm \) e \(\) \( R_2 = 7 \;cm \) a condutividade é \( \sigma _1 = 5 \;\times 10^4\;\;\;Sm^{-1}\;, \) e de \( R_2 \) a \( R_3 = 9 \;cm \) a condutividade é \( \sigma _2 = 2 \;\times 10^5\;\;Sm^{-1}\; \) As superfícies interna, de raio \(R_1\), e externa, de raio \(R_2\), desta anilha são mantidas por uma bateria a uma tensão \( V = 6 \;mV, \) através de dois elétrodos cilíndricos, como indicado na figura. \( \) \(\)Determine a corrente \(I\) que atravessa a anilha nestas condições. \( \)\(\)
\(\)Considere os vectores \( \vec{\mathbf{a}} = \vec{\mathbf{e}} _x-4 \vec{\mathbf{e}} _y \) e \( \vec{\mathbf{b}} = 5 \vec{\mathbf{e}} _x+3 \vec{\mathbf{e}} _y \) Calcule o produto interno \(c =\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \) e, a partir desse resultado, calcule o ângulo \(\theta \) entre os vectores \(\vec{\mathbf{a}} \) e \(\vec{\mathbf{b}} \). Escolha a resposta correta que corresponde ao valor para o ângulo \(\theta \) ou em graus ou em radianos. \( \)\(\)
\(\)Um anel rola sem deslizar por um plano inclinado como representado na figura. O plano inclinado tem um comprimento \( L= 180 \;cm \) e faz um ângulo \( \beta = 35 \;{}^{\circ}. \) A massa do anel é \( M= 200 \;g \) e o raio do anel é \( R= 25 \;cm. \) \(\) O anel é largado com velocidade incial nula de um ponto \(A\) na extremidade superior do plano inclinado. \( \) \(\)Alínea a: Qual é a altura do ponto \(A\)? \( \) \(\)Alínea b: Qual é a aceleração linear \(a\) do anel ao longo do plano inclinado? \( \) \(\)Alínea c: Qual é o momento de inércia do anel em relação a um eixo de rotação que passa no seu centro e é perpendicular ao plano do anel? \( \) \(\)Alínea d: Quanto tempo demora o anel a chegar ao fim do plano inclinado? \( \)\(\)
\(\)Um anel e um disco rodam sem deslizar ao longo de um plano inclinado. As massas do disco e do anel são iguais, e os seus raios também são iguais. \( \) \(\)Pretende-se saber qual chega primeiro ao fim do plano inclinado. \( \) \(\)Escolha a resposta certa entre as seguintes alternativas: \( \)\(\)
\(\)Duas colunas estão ligadas a um mesmo amplificador emitindo um som com frequência \( f=50\;Hz. \) As colunas estão fixas a uma parede, alinhadas na direção horizontal e a uma altura do chão \( H=1.6\;m. \) A distância entre as colunas na parede é \( d=9\;m. \) Um técnico de som está situado a uma distância \( L\) \( \) das paredes mesmo em frente a uma das colunas, como está esquematicamente repreentado na figura acima. Os ouvidos estão à mesma altura das colunas. Considere que o técnico, por estar a proceder a testes antes de um concerto, tapa um dos ouvidos e a certas distâncias \( L \) deixa de ouvir som. Em todas estas situações o técnico está sempre em frente à mesma coluna e os únicos sons que ouve têm origem nas colunas e não há sons refletidos. \( \) Calcule a distância mínima à parede, \(L_{\min }\), a que o técnico deixa de ouvir o som produzido pelas colunas. Considere a velocidade do som no ar \( v_{som}=340\;m/s. \) Apresente o resultado com três algarismos significativos. \( \)\(\)
\(\)Considere um condutor que se desloca de automóvel na via pública em trajetória retilínea e a uma velocidade constante com módulo \( v_i= 50 \;km/h.\; \) Num dado instante o condutor avista um peão que decide atravessar uma passadeira localizada a uma distância inicial \( D_i= 30 \;m.\; \) O condutor consegue travar o veículo e parar mesmo antes de atingir a pessoa. Qual a aceleração do veículo durante a manobra de travagem para conseguir parar a viatura a uma distância do peão que pode considerar nula. \( \) \(\)Nota: deve tomar em consideração que o automóvel continua a deslocar-se com velocidade constante \(v_i \) durante o tempo de reação. Este tempo de reação, \( t_r \) , corresponde ao intervalo de tempo entre o instante em que o condutor avistou o peão e o instante em que reagiu e começou a travar. Considere \( t_r = 1 \;s.\; \)\(\)
\(\)Considere um ponto que se desloca num movimento circular uniforme \( \vec{\mathbf{r}} (t)= 2 \vec{\mathbf{e}} _x \cos (0.60 t+1.11)+2 \vec{\mathbf{e}} _y \sin (0.60 t+1.11) \;. \) Calcule a sua aceleração quando chega ao ponto \( \vec{\mathbf{r}} _1 \) passados \( t= 2 \;s, \) sabendo que parte do ponto inicial \( \vec{\mathbf{r}} _o. \) Escreva o resultado em coordenadas do referencial \( \left\{\vec{\mathbf{e}} _r,\vec{\mathbf{e}} _{\theta }\right\} \)\(\)