\(\)Na figura, apoiado no solo,o corpo de massa \( M= 6 \;kg\; \) está ligado, através de três roldanas fixas, a um corpo pendurado de massa \( m= 4 \;kg. \) Note que duas das roldanas estão ligadas a uma parede fixa e a terceira roldana está ligada ao corpo M \( \;.\; \) Despreze a massa do fio de ligação, considerado inextensível, bem como qualquer atrito. Use \( g= 9.8 \;m\left/s^2.\right. \) \(\) Determine a aceleração do corpo M em relação ao solo \( \;? \) \( \) \( \)\(\)

\(\)Na figura um automóvel sobe primeiro uma rampa de inclinação \( \alpha = 16 \;{}^{\circ} \) com uma velocidade constante \( v_1= 14 \;m/s.\; \) \(\) Desce depois uma rampa idêntica com velocidade constante \( v_2= 23 \;m/s. \) \(\) Segue então num plano horizontal, agora com velocidade constante \( v_0 \;. \) \(\) Sabemos que nos três casos a potência do seu motor manteve-se constante. Nota: Na figura estão representadas as três forças F que o motor faz, nas três situações \( \;. \) \(\) Determine a velocidade do automóvel no plano horizontal \( \;? \) \( \)\(\)

\(\)Uma corda de comprimento total L e densidade linear \( \mu = 83 \;g/m\; \) está enrolada no chão. Queremos elevar a extremidade da corda na vertical \( \;.\; \) \(\) Determine o trabalho necessário para elevar a extremidade da corda, desde o chão até uma altura \( H= 11 \;cm\;? \) \(\) Sugestão: Comece por calcular a força necessária para manter uma ponta da corda a uma altura y do chão \( \;. \)\(\)

\(\)Na figura um pêndulo de massa \( m= 133 \;g \) e comprimento \( L= 70 \;cm\; \) é largado da posição A que faz um ângulo \( \theta _1= 45 \;{}^{\circ} \) com a vertical. Na descida bate num prego colocado na vertical, à distância \( \text{x} \) do ponto pivot fixo, e dobra passando a executar uma trajectória de raio diferente \( \;. \) \(\) Sabemos que a tensão de ruptura do fio é \( K= 5.3 \) vezes o peso do pêndulo \( \;. \) \(\) Determine a distância máxima x onde deve ser colocado o prego, de modo que o fio não parta quando o atinge \( \;? \)\(\)

\(\)Na figura um corpo desliza sem atrito, ao longo de uma calha. Parte de uma altura \( h= 138 \;cm, \) onde se encontra inicialmente em repouso \( \;. \) \(\) No final da rampa encontra uma calha semicircular, de diâmetro exactamente igual à altura de onde partiu \( \;. \) \(\) Determine a altura máxima alcançada pelo corpo, enquanto encostado à calha \( \;? \)\(\)

\(\)Na figura um corpo de massa \( m= 175 \;g \) e uma mola de constante \( K= 267 \;N/m\; \) estão sobre um plano inclinado de ângulo \( \theta = 33 \;{}^{\circ}. \) \(\) O corpo é encostado à mola e esta é comprimida de uma distância \( \Delta = 19 \;cm. \) \(\) Largamos o corpo e ele vai deslizar sobre o plano com um atrito de coeficiente \( \mu = 0.7 \) subindo o plano até parar instantâneamente \( \;. \) \(\) Determine a distância d, entre o ponto de altura máxima atingida pelo corpo e a posição de repouso da mola \( \;? \)\(\)

\(\)Dois corpos pontuais, A e B, partem do mesmo ponto e deslocam-se na mesma direcção, com as velocidades representadas na figura. \(\) O corpo A parte no instante \( t= 0 \;s\; \) e o corpo B parte no instante \( t_1= 10 \;s\;.\; \) \(\) No instante \( t_2= 20 \;s\; \) têm a mesma velocidade. \(\) Determine o instante t em que os dois corpos se vão encontrar \( \;? \)\(\)

\(\)Na figura dois corpos estão ligados por um fio fino, que passa por uma roldana de massa desprezável \( \;. \) \(\) O corpo \( m= 76 \;g \) parte do solo. O corpo \( M= 207 \;g \) é largado de uma altura \( d= 121 \;cm. \) \(\) Calcule a altura \( \text{x} \) que o corpo m deve subir de modo que a sua energia mecânica instantânea seja igual à do corpo \( \text{M} \;? \)\(\)

\(\)Um corpo é lançado com velocidade inicial \( v_o= 22 \;m/s,\; \) segundo um ângulo \( \alpha \) com a horizontal. \(\) O corpo está na base de um plano inclinado de ângulo \( \Phi = 25 \;{}^{\circ},\; \) (ver figura). \(\) Qual o ângulo de lançamento que corresponde ao alcance máximo L ao longo do plano \( \;? \)\(\)

\(\)Um drone voa horizontalmente com uma velocidade constante \( U= 5 \;m/s. \) Uma pedra é lançada com velocidade inicial \( v_o= 23 \;m/s,\; \) segundo um ângulo \( \alpha = 72 \;{}^{\circ}, \) indicado na figura. Este é o ângulo de visão do drone pelo observador. Sabemos que a pedra consegue atingir o drone. \(\) Determine a altura \( \text{h} \) do voo do drone \( \;? \)\(\)

\(\)Na figura está representada uma roda de raio \( R= 46 \;cm \) de um automóvel que se desloca com velocidade horizontal constante \( v_o= 7 \;m/s,\; \) sobre uma estrada enlameada. \(\) Os pedaços de lama que ficam colados ao pneu vão descolar e são projectados, devido à rotação. Seguem uma trajectória semelhante à linha tracejada da figura \( \;.\; \) \(\) Determine a altura máxima \( \text{h} \;,\; \) relativa ao plano horizontal, alcançada pelo pedaço de lama \( \;?\; \) \(\) SUGESTÃO: Comece por calcular o ângulo \( \theta \) da figura que vai corresponder à altura máxima \( \;.\; \) \( \)\(\)

\(\)Na figura um cubo de gelo escorrega sobre uma esfera de aço fixa, de raio \( R= 18 \;cm,\; \) a partir do topo, sem velocidade inicial. Despreze qualquer atrito \( \;.\; \) \(\) Determine a distância \( \text{d} \) horizontal entre o ponto de largada e o ponto de contacto do cubo de gelo com o solo, depois de perder o contacto com a esfera \( \;?\; \) \(\) SUGESTÃO: Comece por calcular o ângulo \( \theta \) em que o cubo perde o contacto com a esfera \( \;.\; \) \( \)\(\)

\(\)Na figura um corpo de massa \( M= 90 \;g \) é lançado horizontalmente,despreze o atrito, com uma velocidade constante \( v_0= 6 \;m/s.\; \) \(\) Vai subir uma calha semicircular de raio \( R \) passa no ponto Q e vai cair, linha a tracejado, tocando o solo no ponto P, a uma distância \( \text{d} \) do início da subida. \(\) Calcule o valor do raio R que conduz a um d máximo (alcance máximo) \( \;? \) \( \) \( \)\(\)

\(\)Na figura duas esferas idênticas, de massa \( M= 15 \;kg \) e raio \( R= 16 \;cm,\; \) são colocadas dentro de um contentor cilíndrico de vidro, de diâmetro \( L= 47 \;cm.\; \) Use \( g= 9.8 \;m\left/s^2.\right. \) \(\) Determine a amplitude da força de contacto entre as duas esferas \( F= \;? \) \( \) \( \)\(\)

\(\)Na figura uma esfera de massa \( M= 10 \;kg \) e raio \( R= 8 \;cm,\; \) está encostada a uma parede de vidro e presa à mesma parede por um fio de aço, radial, de comprimento \( L= 30 \;cm.\; \) Despreze o atrito e use \( g= 9.8 \;m\left/s^2.\right. \) \(\) Determine a amplitude da força normal de contacto entre a esfera e a parede \( N= \;? \) \( \) \( \)\(\)

\(\)Considere o sistema mecânico da figura. Um macaco de massa \( M= 30 \;kg \) puxa uma corda que passa por uma roldana e liga a um bloco de massa \( m= 66 \;kg \) colocado sobre uma superfície horizontal, onde pode escorregar \( \;.\; \) Despreze o atrito e use \( g= 9.8 \;m\left/s^2.\right. \) \(\) O macaco parte do chão e sobe a corda com uma velocidade constante \( v_0= 2.8 \;m/s. \) \(\) Determine a altura máxima atingida pelo macaco em relação ao solo \( \;? \) \( \)\(\)

\(\)Os dois blocos da figura podem deslocar-se sem atrito e são usados para comprimir uma mola de massa desprezável e constante \( K= 79 \;N/m. \) \(\) A mola é comprimida \( 5 \;cm.\; \) O bloco A tem massa \( M_A= 12 \;kg. \) O bloco B tem massa \( M_B= 11 \;kg. \) \(\) Num dado instante os blocos deixam de comprimir a mola. Qual a velocidade do bloco B imediatamente após deixar de estar ligado à mola \( \;? \) \( \) \( \) \( \)\(\)

\(\)Os dois asteroides da figura têm massas \( M_A= 64 \;kg\; \) \text{e} \( M_B= 37 \;kg. \) \(\) A velocidade inicial de A é \( v= 39 \;m/s. \) B está em repouso. \(\) Depois da colisão a trajetória de A sofre um desvio \( \alpha = 47 \;{}^{\circ}\; \) e a de B faz um ângulo \( \beta = 49 \;\;{}^{\circ}\; \) com a direção inicial de A \( \;.\; \) \(\) Qual é a velocidade do asteroide B imediatamente após o choque \( \;? \) \( \)\(\)

\(\)Duas moedas idênticas de massa \( 37 \;g\; \) e raio \( R= 12 \;mm,\; \) estão sobre uma mesa horizontal. \(\) A moeda 2 está parada. A moeda 1 colide com a 2 com uma velocidade horizontal \( v= 3.5 \;m/s. \) A colisão é elástica. \(\) A distância d entre as duas rectas paralelas que passam nos centros das moedas (denomina-se parâmetro de impacto) vale \( d= 14 \;mm. \) \(\) Qual a velocidade da moeda 2 após a colisão \( \;? \) \( \) \( \) \( \)\(\)

\(\)A pequena esfera de massa \( m= 170 \;g\; \) está ligada a um fio de comprimento \( L= 85 \;cm\; \) e é largada da posição horizontal \( \;. \) \(\) Na posição vertical colide elasticamente com outra massa \( M= 140 \;g,\; \) ligada a uma mola de constante \( K= 79 \;N/m. \) \(\) Qual é a compressão máxima da mola \( \;? \) \( \) \( \)\(\)