Se a luz entrar no material do cilindro central com um ângulo \( \theta _B=27\;{}^{\circ}, \) calcule qual o ângulo \( \theta _C \) com que a luz incide na fronteira entre o material com índice de refração \( n_f \) e o material da cobertura com índice de refração \( n_c\;. \) Considere o ângulo \(\theta _C \) medido em relação à normal ao plano de separação entre esses dois meios. \( \)\(\)

Nas condições da alínea anterior, e assumindo que o ângulo de incidência é de \( \theta _C=63\;{}^{\circ} \) calcule o valor limite de \( n_c \) para que ocorra reflexão total no interface cilindro-capa. \( \)\(\)

Assuma agora que a luz atinge a superfície da fronteira entre \( n_f \) e \( n_c \) fazendo um ângulo de \(50{}^{\circ}\) com a normal a esta superfície. \( \) Por forma a que haja reflexão total na interface cilindro central-capa qual das opções deverá acontecer? \( \)\(\)

\(\)Neste problema pretende-se analisar como é que uma fibra ótica consegue transportar luz. Uma fibra ótica pode ser idealizada como um cilindro de material com índice de refracção \( n_f=1.5 \) coberto com uma capa, também cilíndrica, com índice de refração \( n_c\;. \) Considere um raio de luz incidente na parte central da fibra ótica a partir do ar. O ar tem índice de refração \( n_a=1\;, \) e o ângulo de incidência \( \theta _A=20\;{}^{\circ} \) é medido relativamente à normal à face plana do cilindro (ver figura). \( \) Qual o ângulo de refração \( \theta _B= \) com que o raio de luz entra no material, ângulo medido relativamente à normal à superfície de separação ar/cilindro? Apresente o resultado em graus. Nota: a magnitude dos ângulos apresentados é arbitrária. \( \)\(\)

\(\)Um feixe de muões, \( \mu \) , em raios cósmicos, move-se à velocidade de \( v=0.993\;c. \) Qual é a percentagem de muões que sobrevive após um percurso de \( 1910\;m? \) Assuma um tempo de meia-vida de \( T_{1/2}=1.53\;\times 10^{-6}s \) no referencial próprio. Apresente o resultado com 4 algarismos significativos. \( \)\(\)

\(\)Explique porque é que \( \int _0^t\tau ^2{d} \tau = \frac{t^3}{3} \;. \)\(\)

\(\)No ponto de interacção IP5 no LHC, onde se encontra a experiência CMS, dois feixes de protões, de energia \(6.5\; TeV\) cada, colidem segundo um ângulo \( \theta = 400 \;\mu rad \) durante um período de tomada dados. Determine a magnitude do momento linear de cada um dos protões no referencial do centro de momento. \( \) \(\)Considere a massa do protão \( m_p= 938 \;MeV\left/c^2.\right. \) Dê o resultado com 5 algarismos significativos em unidades \( \;MeV/c. \)\(\)

\(\)Ainda no contexto do problema anterior, use o valor \( ℰ= 44 \;GeV \) para a energia da partícula , \( p= 32 \;GeV/c \) para o seu momento linear e \( d= 4 \;mm \) para a distância percorrida pela partícula invisível. Determine o tempo de vida \(\tau \) da partícula no seu referencial próprio. \(\) Dê o resultado em pico-segundos = \(10^{-12}s\) com 4 dígitos significativos. \( \)\(\)

\(\)Usando os dados do problema anterior, quais das expressões seguintes exprime corretamente a massa da partícula invisível? \( \) \(\)Note que mais do que uma pode estar certa e cada escolha errada será penalizada. \( \)\(\)

\(\)Numa experiência de acelerador é observada numa colisão a presença de uma partícula instável cuja trajectória (invisível) tem um comprimento \(d\). \( \) Após a reconstrução das trajectórias de todas as outras partículas (visíveis) envolvidas verificou-se que essa partícula tinha uma energia \(ℰ\) \( \) e um momento linear de magnitude \(p\) . \( \) Escolha a expressão correta para a velocidade \(v\) da partícula. \( \)\(\)

\(\)O \( J/\psi \) é uma partícula elementar que se pode desintegrar num par muão \( \mu ^- \) e anti-muão \( \mu ^+. \) No laboratório observa-se um \(J/\psi \) através desse decaimento e verifica-se que ele se movia com uma velocidade \( V. \) Devido à conservação do momento linear, no referencial próprio do \(J/\psi \) o muão e o anti-muão são emitidos em direcções diametralmente opostas com uma velocidade de módulo \( v_{\mu }^{\prime }. \) Sabendo que o muão faz nesse referencial um ângulo \( \theta ' \) com a direcção de deslocamento original do \(J/\psi \) , \( \) escolha a expressão correta para este ângulo quando é medido no laboratório. \( \)\(\)

\(\)Uma partícula desloca-se num acelerador com uma velocidade \( v_p=\beta _p \;c \) quando se desintegra num par muão anti-muão. Um dos muões desloca-se para a frente ao longo da trajetória inicial,com velocidade \( V_+^{\prime } \;km/s \) no referencial próprio da partícula original. Qual é a velocidade do outro muão \( V_- \) quando visto no referencial do acelerador? \( \)\(\)

\(\)Um protão no LHC, o maior acelerador de partículas do mundo, desloca-se a uma velocidade \( v_p= 0.9999999 \;c. \) Se um protão com essa velocidade atravessasse a nossa galáxia ao longo do seu diâmetro, levaria \( T= 100414.35 \;anos \) no referencial da galáxia. Qual seria o diâmetro da galáxia visto do referencial próprio do protão? \( \) Dê o resultado com 4 dígitos significativos. \( \)\(\)

\(\)Determine a massa do Sol a partir do movimento da Terra em torno do Sol. Considere que a órbita da Terra é circular, o que é muito aproximadamente verdade. \( \) \(\)Use \( 1 u.a.= 1.496\times 10^8 \;km \) para a distância Terra-Sol, e \( G= 6.674\times 10^{-11} \;\left.m^3\right/kg/s^2 \) para a constante gravitacional universal. \( \) \(\)Dê a sua resposta com 4 dígitos significativos e em notação científica \( x.yyy En \) (obrigatório) que representa \( x.yyy\times 10^n. \)\(\)

\(\)Imagine que queria ter um corpo em órbita a uma altura \( h= 246 \;km \) acima da superfície terrestre. Que velocidade teria que ter esse corpo assumindo que a trajectória é, em muito boa aproximação, circular? \( \) Considere que o raio médio da Terra é \( R_T= 6371 \;km. \)\(\)

\(\)Nas condições do problema anterior, qual deve ser o módulo da aceleração da massa \( m_2= 400 \;g, \) sabendo que \( m_1= 300 \;g \) e a inclinação da rampa é \( \theta = 60 \;{}^{\circ}. \) Considere a aceleração da gravidade \( g= 9.80 \;m\left/s^2.\right. \)\(\)

\(\)Considere a máquina de Atwood representada na figura, constituída por uma roldana sem massa que roda sem atrito e duas massas \( m_1 \) e \( m_2 \) ligadas por um fio inextensível que não desliza sobre a roldana. \( \) Considere que a massa \( m_2 \) está constrangida a deslizar em linha recta ao longo de uma superfície inclinada que faz um ângulo \( \theta \) com a horizontal. Assumindo que não existe atrito em nenhuma parte do sistema, determine \( \) a expressão correta para a tensão \(T\) no fio que liga as massas. \( \)\(\)

\(\)Considere que a escada tem uma massa \( m= 10 \;kg, \) um comprimento \( l= 7 \;m \) e que a escada faz com o chão um ângulo \( \theta = 53 \;{}^{\circ}. \) Calcule o valor do módulo do torque devido ao peso da escada relativamente ao ponto em que a escada toca no chão. \( \) Considere o valor da aceleração gravítica \( g= 9.80 \;m\;s^{-2}. \)\(\)

\(\)Uma escada está encostada contra uma parede. Sabe-se que o centro de massa da escada encontra-se no meio desta. \( \) Considere que \( F_{px} \) é o módulo da força que a parede faz sobre a escada na direcção do eixo \( xx, \) e \( F_{cx} \) o módulo da força que o chão faz sobre a escada na mesma direcção. \( \) Assumindo que o sistema se encontra em equilíbrio estático qual das seguintes expressões é verdadeira? \( \)\(\)

\(\)Uma escada de comprimento \( 2L= 6 \;m \) e massa \( m= 7 \;kg, \) está encostada a uma parede fazendo um ângulo \(\alpha \) com o chão. Assumindo que nem a parede nem o chão têm atrito nos pontos de contacto com a escada, \( \) \(\) Alínea a: determine o ângulo \(\alpha _o\) para o qual a escada não escorrega. \( \) \(\)Alínea b: assumindo que a escada começa a escorregar, determine o ângulo \( \alpha _1 \) em que a escada perde contacto com a parede. \( \)\(\)