\(\)Um disco não-condutor de raio \( R = 60.00 \;cm \) está carregado com carga \( Q = 57.00 \;mC, \) uniformemente distribuída pela sua superfície. Quando o disco é posto a rodar em torno do seu eixo vertical com velocidade angular \( \vec{\mathbf{\omega }} = 18 \;\times 10^3\;\;\vec{\mathbf{e}} _z\;\;r.p.m.\; \) qual é a magnitude e direção do campo magnético no centro \(O\) do disco ? \( \)\(\)

\(\)Um fio com a forma de um semicírculo de raio \( R = 7 \;cm \) , de espessura desprezável, é carregado com uma carga total de \( Q = 6 \;nC \) Assumindo que a carga está uniformemente distribuída ao longo do fio, determine a magnitude e direção do campo eléctrico \( \vec{\mathbf{E}} \) no centro \(O\) do semicírculo. \( \)\(\)

\(\)Um ferromagnete com um núcleo quadrado de permeabilidade relativa \( \mu _r = 6 \;\times 10^3\; \) tem um lado com secção reta \( 2\times S = 14 \;cm^2 \) onde há um enrolamento de \( N_1 = 5000 \) espiras. \( \) Os restantes lados têm secção reta \( S \), um dos quais com um enrolamento de \( N_2 = 1000 \) espiras e outro exibindo uma fenda de espessura \( \delta = 9 \;mm, \) como indicado na figura. \( \) Considerando um percurso médio de comprimento \( d = 16 \;cm \) em cada braço do ferromagnete, e sabendo que os enrolamentos são percorridos por correntes \( I_1 = 4 \;A \) e \(\) \( I_2 = 15 \;A \) no sentido indicado na figura, determine o valor médio do campo magnético \(\vec{\mathbf{B}} \) na fenda (ar), assumindo que as linhas de campo magnético não se dispersam muito na transição do ferromagnete para o ar nessa região e que o fluxo magnético é preservado nos diferentes lados do núcleo. \( \)\(\)

\(\)Uma viatura descreve uma trajetória circular de raio \( R= 50 \;m \) num plano horizontal. A viatura pesa \( P= 9000 \;N. \) Nas 4 rodas atua uma força de atrito total \(\vec{\mathbf{F_a}} \) que depende do coeficiente de atrito estático entre as rodas e o asfalto, \(\mu _e \) (ver figura). \( \) O valor máximo para o coeficiente de atrito estático é \( \mu _{e,\max }= 0.6 \;. \) Calcule o valor máximo possível da velocidade para o carro conseguir descrever essa curva sem derrapar. \( \) Apresente o resultado em unidades \(km/h \) e com duas casas decimais. \( \)\(\)

\(\)Um dono de um celeiro vê um atleta que, segurando uma vara na posição horizontal, corre com uma velocidade \( v = 0.7\;c \) em direção ao seu celeiro. O dono do celeiro sabe que o celeiro tem \( 10\;m \) de comprimento e tem ainda duas portas opostas - uma de entrada e uma de saída. No celeiro funciona um controlo remoto que permite abrir ou fechar as duas portas simultaneamente. Sabendo que para o atleta o comprimento da sua vara é de \( 15\;m \) calcule o comprimento da vara no referencial do dono do celeiro. Apresente o resultado arredondado às unidades. \( \)\(\)

\(\)Um dono de um celeiro vê um atleta que, segurando uma vara na posição horizontal, corre com uma velocidade \( v = 0.75\;c \) em direção ao seu celeiro. O dono do celeiro sabe que o celeiro tem \( 25\;m \) de comprimento e tem ainda duas portas opostas - uma de entrada e uma de saída. No celeiro funciona um controlo remoto que permite abrir ou fechar as duas portas simultaneamente. Sabendo que para o atelta o comprimento da sua vara é de \( 30\;m, \) calcule o comprimento do celeiro no referencial do atleta e apresente o resultado com 2 algarismos significativos. \( \)\(\)

\(\)Um dono de um celeiro vê um atleta que, segurando uma vara na posição horizontal, corre com uma velocidade \( v = 0.65\;c \) em direção ao seu celeiro. O dono do celeiro sabe que o celeiro tem \( 25\;m \) de comprimento e tem ainda duas portas opostas - uma de entrada e uma de saída. No celeiro funciona um controlo remoto que permite abrir ou fechar as duas portas simultaneamente. Sabendo que para o atleta o comprimento da sua vara é de \( 30\;m, \) acha que o dono do celeiro conseguirá acionar o controlo remoto e fechar e abrir logo as duas portas tendo tido momentaneamente o atleta com a vara dentro do celeiro sem tocar em nenhuma das portas? \( \)\(\)

\(\)Um dono de um celeiro vê um atleta que, segurando uma vara na posição horizontal, corre com uma velocidade \( v = 0.65\;c \) em direção ao seu celeiro. O dono do celeiro sabe que o celeiro tem \( 15\;m \) de comprimento e tem ainda duas portas opostas - uma de entrada e uma de saída. No celeiro funciona um controlo remoto que permite abrir ou fechar as duas portas simultaneamente. Sabendo que para o atleta o comprimento da sua vara é de \( 25\;m, \) acha que no referencial do atleta este consegue passar a correr pelo celeiro sem tocar em nenhuma das portas que fecham? \( \)\(\)

\(\)Considere um corpo descrevendo um movimento circular e uniforme. Assinale todas as afirmações que sejam verdadeiras:\(\)

\(\)Um automóvel parte do repouso com aceleração \( a= 2 \;m\left/s^2\right. \) durante um tempo \( T_1 \;, \) depois continua em movimento uniforme durante algum tempo \( T_2 \;. \) Finalmente trava até à paragem completa, com uma desaceleração igual, em módulo, à inicial (ver figura). \( \) \(\)Sabemos que o tempo total de deslocamento é \( T= 49 \;s, \) e a velocidade média de todo o percurso é \( \bar{v}= 13 \;m/s. \) \(\)Alínea a: Determine a duração \(T_2\)do movimento uniforme. \( \) \(\) Alínea b: Calcule a distância total \( X_T \) percorrida durante o movimento. \( \)\(\)

\(\)De uma altura \( h= 3 \;m, \) atira-se uma bola para cima, com velocidade inicial \( v_o= 2 \;m\;s^{-1}. \) Considere como sentido positivo do movimento o sentido da velocidade inicial. \( \) A altura máxima é atingida quando a velocidade é: \( \)\(\)

\(\)Duas bolas, azul e branca, são largadas simultaneamente de um ponto a \( h= 2 \) metros do chão. A bola azul tem uma velocidade inicial nula, enquanto que a bola branca é atirada na horizontal com velocidade inicial \( v_o= 2 \;m\;s^{-1}. \) Compare o tempo de chegada ao chão da bola azul e da bola branca. Podemos afirmar que: \( \)\(\)

\(\)Um toro ferromagnético, de permeabilidade relativa \( \mu _r = 1 \;\times 10^3, \) secção quadrada de lado \( h = 50 \;mm \) e raio exterior \( R = 40 \;cm, \) tem uma fenda com uma abertura angular de \( \theta = 5.40 \;{}^{\circ}.\; \) Um fio condutor enrolado à volta do toro formando \( N = 4000 \) espiras é percorrido por uma corrente \( I = 11 \;A, \) como indicado na figura. \( \) Despreze a dispersão de linhas de campo na fronteira do ferromagnete com o ar e assuma que o fluxo magnético é preservado no toro. \( \) Determine o coeficiente de auto-indução \(L\) do enrolamento e fracção da energia magnética \(\frac{\delta W_m^{ar}}{W_m}\) armazenada na fenda (ar). \( \)\(\)

\(\)Uma bala de massa \( m_b \) é disparada com velocidade horizontal \( v_b \) contra um bloco \(A \) de massa \( M_A \) pousado na plataforma \(BC\) de um carrinho de massa \( M_c, \) estando ambos inicialmente em repouso. A bala fica posteriormente alojada no bloco \(A\) que se desloca sobre a plataforma. \(\)O coeficiente de atrito cinético entre o bloco \(A\) e a plataforma do carrinho é \( \mu _c\gt 0, \) o que causa a aceleração do carrinho e a desaceleração do bloco \(A\). \( \) \(\)Sabendo que o carrinho pode rolar livremente sem atrito, determine a expressão para velocidade final \( \vec{\mathbf{v}} _f \) do conjunto (carrinho+bloco com bala), assumindo que o bloco, visto da plataforma, acaba por parar ainda em cima desta. \( \)\(\)

\(\)Usando as notações do problema anterior, escolha a expressão correta para a aceleração \( \vec{\mathbf{a}} _c \) do carrinho enquanto o bloco \(A\) está em movimento relativamente à plataforma \(BC\) e se imobiliza antes de percorrer a distância \(D\) nesta. \( \) Considere que \( \vec{\mathbf{v}} _b=v_b\vec{\mathbf{e}} _x, \) com \( v_b\gt 0. \)\(\)

\(\)Considere agora que o bloco \(A\) tem peso \( P_A= 490. \;N \) e está a uma distância \( D= 5 \;m \) da extremidade \(B\) da plataforma, como indicado na figura anterior. \(\)Utilizando os valores \( \mu _c= 0.138 \) para o coeficiente de atrito entre o bloco e a plataforma, \( \vec{\mathbf{v}} _b= 545 \;\vec{\mathbf{e}} _x\left(m\;s^{-1}\right) \) para a velocidade da bala com massa \( m_b= 380. \;\;g, \) e \( M_c= 200 \;kg \) para a massa do carrinho, determine o tempo \( t_f \) que o carro leva até atingir a velocidade final \( \vec{\mathbf{v}} _f. \)\(\)

\(\) Uma nave com \( 30\;m \) de comprimento encontra-se estacionada numa base espacial. Quando parte para uma viagem e atinge a velocidade cruzeiro, o seu comprimento medido a partir da base é de \( 20\;m. \) Qual o comprimento da nave para os seus tripulantes? \( \) \(\)

\(\)Uma nave com \( 20\;m \) de comprimento encontra-se estacionada numa base espacial. Quando parte para uma viagem e atinge a velocidade cruzeiro, o seu comprimento medido a partir da base é de \( 10\;m. \) Qual o comprimento da nave para os seus tripulantes? \( \)\(\)

\(\)Um condensador cilíndrico de comprimento \( L = 39. \;cm \) tem armaduras concêntricas, de raios \( R_1 = 2 \;cm, \) \( R_2 = 11. \;cm \) e\(\) \( R_3 = 5 \;cm \) , como indicado na figura. O espaço entre as armaduras está preenchido com um dielétrico de permitividade \( \varepsilon = 1. \;\times \;\varepsilon _o \) e a armadura exterior está ligada à Terra. \( \) Qual é a capacidade \(C\) deste condensador em \(nF\)? \( \)\(\)

\(\)Um condensador cilíndrico muito comprido tem armaduras concêntricas, de raios \( R_1 = 4 \;cm, \) e \(\) \( R_2= 25 \;cm, \) ambas com espessura desprezável, separadas por dois dielétricos de permitividades \( \varepsilon _1 = 4 \;\times \;\varepsilon _o \) e \( \) \( \varepsilon _2 = 40 \;\times \;\varepsilon _o \) que preenchem de forma simétrica o espaço entre as armaduras, como indicado na figura.\(\)Determine a capacidade por unidade de comprimento \(c\) deste condensador em \(nF m^{-1}\). \( \)\(\)